coding/recall.md
2025-06-24 23:50:07 +00:00

80 KiB
Raw Blame History

#R 75 Sort Colors/颜色分类 (Medium)
# p0指向 0 应该放置的位置p0左边全是0, p0本身并不包括0
# p2指向 2 应该放置的位置p2右边全是0, p2本身并不包括2
# i当前遍历位置
class Solution:
    def sortColors(self, nums: List[int]) -> None:
        p0, i , p2 = 0,0,len(nums) - 1
        while i <= p2:
            if nums[i] == 0:
                nums[i], nums[p0] = nums[p0], nums[i]
                p0 += 1
                i += 1
            elif nums[i] == 2:
                nums[i], nums[p2] = nums[p2], nums[i]
                p2 -= 1
                # 注意i 不增加,因为换过来的 nums[i] 还要检查
            else: 
                i += 1
#R 259 3Sum Smaller $/较小的三数之和 (Medium)
# satisfy the condition nums[i] + nums[j] + nums[k] < target
class Solution:
    def threeSumSmaller(self, nums, target):
        if len(nums) < 3:
            return 0
        res = 0
        nums.sort()
        n = len(nums)
        for i in range(n - 2):
            left, right = i + 1, n - 1
            while left < right:
                if nums[i] + nums[left] + nums[right] < target:
                    res += right - left  # 所有 (nums[i], nums[left], nums[left+1]...nums[right]) 都满足条件
                    left += 1
                else:
                    right -= 1
        return res
#H 1163 Last Substring in Lexicographical Order/按字典序排在最后的子串 (Hard)
# 找出它的所有子串并按字典序排列,返回排在最后的那个子串。
# i指向的是当前找到字典序最大的字符j指向的是当前要进行比较的字符。使用一个位移指针k来比较i和j构成的子串[i,..,i + k]和[j,...,j + k]的顺序。i始终指向当前找到字典序最大的字符
class Solution:
    def lastSubstring(self, s: str) -> str:
        n = len(s)
        i = 0
        j = 1
        k = 0
        while j + k < n:
            if s[i + k] == s[j + k]:
                k += 1
            elif s[i + k] < s[j + k]:
                i += k + 1
                k = 0
                if i >= j:
                    j = i + 1
            else:
                j += k + 1
                k = 0
        return s[i:]

滑动窗口

#R 1358 Number of Substrings Containing All Three Characters/包含所有三种字符的子字符串数目 (Medium)  
# 请你返回 ab 和 c 都 至少 出现过一次的子字符串数目。
# 滑动窗口的内层循环结束时,右端点固定在 right左端点在 0,1,2,…,left1 的所有子串都是合法的,这一共有 left 个,加入答案。
class Solution:
    def numberOfSubstrings(self, s: str) -> int:
        ans = left = 0
        cnt = defaultdict(int)
        for c in s:
            cnt[c] += 1
            while len(cnt) == 3:
                out = s[left]  # 离开窗口的字母
                cnt[out] -= 1
                if cnt[out] == 0:
                    del cnt[out]
                left += 1
            ans += left
        return ans
#R 395 Longest Substring with At Least K Repeating Characters/至少有 K 个重复字符的最长子串 (Medium)  s = "ababbc", k = 2  最长子串为 "ababb"
class Solution:
    def longestSubstring(self, s: str, k: int) -> int:
        ans = 0
        for i in range(1,27):       #分治遍历可能的字符种类数量1~26
            cnt = Counter()     #计数
            unique = 0          #字符种类
            num_k = 0           #满足出现次数大于等于k的字符串数量
            left = 0            
            for right,char in enumerate(s):
                if cnt[char] == 0:
                    unique += 1
                cnt[char] += 1
                if cnt[char] == k:
                    num_k += 1
                #当字符串种类超过i时移动左窗口
                while unique > i:
                    left_char = s[left]     
                    if cnt[left_char] == k:
                        num_k -= 1      #因为要一直移动左窗口,所以计数会一直减少,当进入循环时刚好==k时再减一后num_k就要减一了
                    cnt[left_char] -= 1
                    if cnt[left_char] == 0:     #如果减完了,种类就少一个
                        unique -= 1
                    left += 1
                if unique == i and num_k == i:      #当种类满足要求,且子串里的数量都满足>=k时就更新ans
                    ans = max(ans ,right - left +1)
        return ans
#R 424 Longest Repeating Character Replacement/替换后的最长重复字符 (Medium) 可替换字符k次
class Solution:
    def characterReplacement(self, s: str, k: int) -> int:
        count = [0 for _ in range(26)]  #记录当前窗口的字母出现次数
        left = 0    #滑动窗口左边界
        right = 0   #滑动窗口右边界
        retval = 0  #最长窗口长度
        while right < len(s):
            count[ord(s[right])-ord('A')] += 1  
            benchmark = max(count)              #选择出现次数最多的字母为基准 
            others = sum(count) - benchmark     #则其他字母需要通过替换操作来变为基准
            if others <= k:                     #通过与K进行比较来判断窗口是进行扩张
                right += 1
                retval = max(retval, right-left)#记录当前有效窗口长度
            else:                               #通过与K进行比较来判断窗口还是进行位移
                count[ord(s[left])-ord('A')] -= 1
                left += 1
                right += 1                      #这里注意位移操作需要整个向右移不仅仅只是left向右 
        return retval                           #返回最长窗口长度
#H LeetCode 33  "Search in Rotated Sorted Array"
def search(nums, target):
    left, right = 0, len(nums) - 1
    while left <= right:
        mid = (left + right) // 2
        if nums[mid] == target:
            return mid
        # 判断哪一部分是有序的
        if nums[left] <= nums[mid]:  # 左半段有序
            if nums[left] <= target < nums[mid]:
                right = mid - 1
            else:
                left = mid + 1
        else:  # 右半段有序
            if nums[mid] < target <= nums[right]:
                left = mid + 1
            else:
                right = mid - 1
    return -1  # 没有找到目标值
#H 81 Search in Rotated Sorted Array II/搜索旋转排序数组 II (Medium)
# 数组中的值不必互不相同,基于 33 题的简洁写法,只需增加一个 if
class Solution:
    def search(self, nums: List[int], target: int) -> bool:
        if not nums:
            return False
        n = len(nums)
        if n == 1:
            return nums[0] == target

        l, r = 0, n - 1
        while l <= r:
            mid = (l + r) // 2
            if nums[mid] == target:
                return True
            if nums[l] == nums[mid] and nums[mid] == nums[r]:
                l += 1
                r -= 1
            elif nums[l] <= nums[mid]:
                if nums[l] <= target and target < nums[mid]:
                    r = mid - 1
                else:
                    l = mid + 1
            else:
                if nums[mid] < target and target <= nums[n - 1]:
                    l = mid + 1
                else:
                    r = mid - 1
        return False
#R 378 Kth Smallest Element in a Sorted Matrix/有序矩阵中第 K 小的元素 (Medium)
class Solution:
    def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
        n = len(matrix)
        def check(mid):
            """遍历获取较小元素部分元素总数并与k值比较"""
            i, j = n-1, 0
            num = 0
            while i >= 0 and j < n:
                if matrix[i][j] <= mid:
                    # 当前元素小于mid则此元素及上方元素均小于mid
                    num += i + 1
                    # 向右移动
                    j += 1
                else:
                    # 当前元素大于mid则向上移动直到找到比mid小的值或者出矩阵
                    i -= 1
            return num >= k
        left, right = matrix[0][0], matrix[-1][-1]
        while left < right:
            mid = (left + right) >> 1
            if check(mid):
                # 满足 num >= k范围太大移动right至mid 范围收缩
                right = mid
            else:
                left = mid + 1
        return left
#R 410 Split Array Largest Sum/分割数组的最大值 (Hard)   
# 分成 k 个非空的连续子数组,使得这 k 个子数组各自和的最大值 最小。
class Solution:
    def splitArray(self, nums: List[int], k: int) -> int:
        def check(mx):
            s, cnt = inf, 0
            for x in nums:
                s += x
                if s > mx:
                    s = x
                    cnt += 1
            return cnt <= k
        left, right = max(nums), sum(nums)
        return left + bisect_left(range(left, right + 1), True, key=check)
#R 中位数可以奇偶统一表示
def get_median_universal(nums):
    sorted_nums = sorted(nums)
    n = len(sorted_nums)
    median = (sorted_nums[(n - 1) // 2] + sorted_nums[n // 2]) / 2.0
    return median 
# Median of Two Sorted Arrays
import bisect
class Solution:
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
        n = len(nums1) + len(nums2)
        n1, n2 = len(nums1), len(nums2)
        if n1 == 0: return (nums2[n2//2] + nums2[(n2-1)//2]) / 2
        if n2 == 0: return (nums1[n1//2] + nums1[(n1-1)//2]) / 2
        minN, maxN = min(nums1[0], nums2[0]), max(nums1[-1], nums2[-1])
        nums = list(range(minN, maxN+1))
        def func(x):
            # nums1和nums2中<=x的数的个数记为y和x单调
            k1 = bisect.bisect_right(nums1, x)
            k2 = bisect.bisect_right(nums2, x)
            return k1 + k2
        k1 = bisect_right(nums, n//2, key=func)
        if n % 2: k2 = k1
        else: k2 = bisect_right(nums, (n-1)//2, key=func)
        return (nums[k1] + nums[k2]) / 2
#R 9 回文数
class Solution:
    def isPalindrome(self, x: int) -> bool:
        # 同样地,如果数字的最后一位是 0为了使该数字为回文则其第一位数字也应该是 0
        if x < 0 or (x % 10 == 0 and x != 0):
            return False
        reverted_number = 0
        while x > reverted_number:
            reverted_number = reverted_number * 10 + x % 10
            x //= 10
        # 当数字长度为奇数时,我们可以通过 reverted_number // 10 去除处于中位的数字。
        # 例如,当输入为 12321 时,在 while 循环的末尾我们可以得到 x = 12reverted_number = 123
        # 由于处于中位的数字不影响回文(它总是与自己相等),所以我们可以简单地将其去除。
        return x == reverted_number or x == reverted_number // 10
#R 28. 实现 strStr()next数组最长的相同的真前后缀长度
class Solution:
    def getNext(self, next, s):
        j = -1
        next[0] = j
        for i in range(1, len(s)):
            while j >= 0 and s[i] != s[j+1]:
                j = next[j]
            if s[i] == s[j+1]:
                j += 1
            next[i] = j
    def strStr(self, haystack: str, needle: str) -> int:
        if not needle:
            return 0
        next = [0] * len(needle)
        self.getNext(next, needle)
        j = -1
        for i in range(len(haystack)):
            while j >= 0 and haystack[i] != needle[j+1]:
                j = next[j]
            if haystack[i] == needle[j+1]:
                j += 1
            if j == len(needle) - 1:
                return i - len(needle) + 1
        return -1
#R 767 Reorganize String/重构字符串 (Medium)
# 重新排布其中的字母,使得两相邻的字符不同。
# 对于每一种元素,循环在不同桶中进行填充,由于桶的个数等于字符串中最多的元素的数目,因此每个桶中不会出现相同的元素,填充完毕后将桶依次相连即为答案
class Solution:
    def reorganizeString(self, s: str) -> str:
        cnt, idx = Counter(s), 0
        bucketNum = cnt.most_common(1)[0][1] # 桶的数目等于字符串中最多的元素的数目
        if bucketNum > (len(s) + 1) // 2: return ""
        buckets = [[] for _ in range(bucketNum)]
        for c, num in cnt.most_common(): 
            for _ in range(num):
                buckets[idx].append(c)
                idx = (idx + 1) % bucketNum # 循环在不同桶中进行填充
        return "".join(["".join(bucket) for bucket in buckets])
#R 1053.9 Distant Barcodes/距离相等的条形码 (Medium)  
# 请你重新排列这些条形码,使其中任意两个相邻的条形码不能相等。
# 我们先统计数组barcodes中各个数出现的次数然后按照它们出现的次数从大到小排序依次填入偶数后奇数
class Solution:
    def rearrangeBarcodes(self, barcodes: List[int]) -> List[int]:
        cnt = Counter(barcodes)
        barcodes.sort(key=lambda x: (-cnt[x], x))
        n = len(barcodes)
        ans = [0] * len(barcodes)
        ans[::2] = barcodes[: (n + 1) // 2]
        ans[1::2] = barcodes[(n + 1) // 2:]
        return ans
#R 92 Reverse Linked List II/反转链表 II (Medium)
class Solution:
    def reverseBetween(self, head: Optional[ListNode], left: int, right: int) -> Optional[ListNode]:
        p0 = dummy = ListNode(next=head)
        for _ in range(left - 1):
            p0 = p0.next
        pre = None
        cur = p0.next
        for _ in range(right - left + 1):
            nxt = cur.next
            cur.next = pre  # 每次循环只修改一个 next方便大家理解
            pre = cur
            cur = nxt
        p0.next.next = cur
        p0.next = pre
        return dummy.next
#R 146 LRU Cache/LRU 缓存机制 (Medium)
# get 如果关键字 key 存在于缓存中,则返回关键字的值,否则 -1 。
# put 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该逐出最久未使用的关键字。
class Node:
    # 提高访问属性的速度,并节省内存
    __slots__ = 'prev', 'next', 'key', 'value'
    def __init__(self, key=0, value=0):
        self.key = key
        self.value = value
        self.prev = None
        self.next = None
class LRUCache:
    def __init__(self, capacity: int):
        self.capacity = capacity
        self.dummy = Node()  # 哨兵节点  dummy.prev指向尾部dummy.next指向头部
        self.dummy.prev = self.dummy
        self.dummy.next = self.dummy
        self.key_to_node = {}
    # 获取 key 对应的节点,同时把该节点移到链表头部
    def get_node(self, key: int) -> Optional[Node]:
        if key not in self.key_to_node:  # 没有这本书
            return None
        node = self.key_to_node[key]  # 有这本书
        self.remove(node)  # 把这本书抽出来
        self.push_front(node)  # 放在最上面
        return node
    def get(self, key: int) -> int:
    # 返回关键字的值
        node = self.get_node(key)  # get_node 会把对应节点移到链表头部
        return node.value if node else -1
    def put(self, key: int, value: int) -> None:
    # 插入key-value 。如果关键字数量超过 capacity ,则应该逐出最久未使用的关键字    
        node = self.get_node(key)
        if node:  # 有这本书
            node.value = value  # 更新 value
            return
        self.key_to_node[key] = node = Node(key, value)  # 新书
        self.push_front(node)  # 放在最上面
        if len(self.key_to_node) > self.capacity:  # 书太多了
            back_node = self.dummy.prev
            del self.key_to_node[back_node.key]
            self.remove(back_node)  # 去掉最后一本书
    # 删除一个节点(抽出一本书)
    def remove(self, x: Node) -> None:
        x.prev.next = x.next
        x.next.prev = x.prev
    # 在链表头添加一个节点(把一本书放在最上面)
    def push_front(self, x: Node) -> None:
        x.prev = self.dummy
        x.next = self.dummy.next
        x.prev.next = x
        x.next.prev = x
#R 0 Decode String/字符串解码 (Medium)   "3[a]2[bc]",输出:"aaabcbc"
class Solution:
    def decodeString(self, s: str) -> str:
        stack, res, multi = [], "", 0
        for c in s:
            if c == '[':
                stack.append([multi, res])
                res, multi = "", 0
            elif c == ']':
                cur_multi, last_res = stack.pop()
                res = last_res + cur_multi * res
            elif '0' <= c <= '9':
                multi = multi * 10 + int(c)            
            else:
                res += c
        return res
#R 227 Basic Calculator II/基本计算器 II (Medium)
# 输入s = "3+2*2" 输出7。 当前元素为符号时,更新完栈后要记得更新数字和符号
class Solution:
    def calculate(self, s: str) -> int:
        stack = []
        num = 0; sign = '+'
        for i in range(len(s)):
            if s[i].isdigit():
                num = num*10 + int(s[i])
            if s[i] in '+-*/' or i == len(s)-1:
                if sign == '+':
                    stack.append(num)
                elif sign == '-':
                    stack.append(-num)
                elif sign == '*':
                    stack.append(stack.pop() * num)
                else:
                    stack.append(int(stack.pop() / num))
                num = 0; sign = s[i]
        return sum(stack)
#H 385 Mini Parser/迷你语法分析器 (Medium)
# [123,[456,[789]]]  [1,[2]]
class Solution:
    def deserialize(self, s: str) -> NestedInteger:
        if s[0] != '[':
            return NestedInteger(int(s))
        stk = []
        num, negative = 0, False
        for i in range(len(s)):
            if s[i] == '[':
                stk.append(NestedInteger())
            elif s[i] == '-':
                negative = True
            elif s[i].isdigit():
                num = num * 10 + int(s[i])
            elif s[i] == ',' or s[i] == ']':
                if s[i - 1].isdigit():
                    if negative:
                        num *= -1
                    stk[-1].add(NestedInteger(num))
                num, negative = 0, False
                if s[i] == ']' and len(stk) > 1:
                    ni = stk.pop()
                    stk[-1].add(ni)
        return stk.pop()
#R 636 Exclusive Time of Functions/函数的独占时间 (Medium)
# 当函数调用开始时,如果当前有函数正在运行,则当前正在运行函数应当停止,此时计算其的执行时间,然后将调用函数入栈。
# 当函数调用结束时,将栈顶元素弹出,并计算相应的执行时间,如果此时栈顶有被暂停的函数,则开始运行该函数。
# 输入n = 2, logs = ["0:start:0","1:start:2","1:end:5","0:end:6"] 输出:两个函数的独占时间分别为[3,4]
class Solution:
    def exclusiveTime(self, n: int, logs: List[str]) -> List[int]:
        ans = [0] * n
        st = []
        for log in logs:
            idx, tp, timestamp = log.split(':')
            idx, timestamp = int(idx), int(timestamp)
            if tp[0] == 's':
                if st:
                    ans[st[-1][0]] += timestamp - st[-1][1]
                    st[-1][1] = timestamp
                st.append([idx, timestamp])
            else:
                i, t = st.pop()
                ans[i] += timestamp - t + 1
                if st:
                    st[-1][1] = timestamp + 1
        return ans
#R 921 Minimum Add to Make Parentheses Valid/使括号有效的最少添加 (Medium)
class Solution:
    def minAddToMakeValid(self, s: str) -> int:
        stk = []
        for c in s:
            if c == ')' and stk and stk[-1] == '(':
                stk.pop()
            else:
                stk.append(c)
        return len(stk)

单调栈

https://blog.csdn.net/zy_dreamer/article/details/131036101 从左到右遍历元素。单调递增栈:栈顶最小。

  • 查找 「比当前元素大的元素」 就用 单调递增栈,查找 「比当前元素小的元素」 就用 单调递减栈。
  • 从 「左侧」 查找就看 「插入栈」 时的栈顶元素,从 「右侧」 查找就看 「弹出栈」 时即将插入的元素。
#H 模板,单调递增栈(递减改为小于等于)
def monotoneIncreasingStack(nums):
    stack = []
    for num in nums:
        while stack and num >= stack[-1]:
            stack.pop()
        stack.append(num)
#R 0   每日温度,观测到更高的气温,至少需要等待的天数
class Solution:
    def dailyTemperatures(self, T: List[int]) -> List[int]:
        n = len(T)
        stack = []
        ans = [0 for _ in range(n)]
        for i in range(n):
            while stack and T[i] > T[stack[-1]]:
                index = stack.pop()
                ans[index] = (i-index)
            stack.append(i)
        return ans
#H 0  接雨水,排列的柱子,下雨之后能接多少雨水。
# 方法总结找上一个更大元素在找的过程中填坑。while中加了等号这可以让栈中没有重复元素以节省空间。 https://www.bilibili.com/video/BV1VN411J7S7/?vd_source=3f76269c2962e01f0d61bbeac282e5d2 单调递减栈。
class Solution:
    def trap(self, height: List[int]) -> int:
        ans = 0
        st = []
        for i, h in enumerate(height):
            while st and h >= height[st[-1]]:
                bottom_h = height[st.pop()]
                if not st:  # len(st) == 0
                    break
                left = st[-1]
                dh = min(height[left], h) - bottom_h  # 面积的高
                ans += dh * (i - left - 1)
            st.append(i)
        return ans
#R 0.下一个更大元素 I, 每一nums1中的x在nums2中对应位置右侧的第一个比 x 大的元素。如果不存在 -1
class Solution:
    def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]:
        res = {}
        stack = []
        for num in reversed(nums2):
            while stack and num >= stack[-1]:
                stack.pop()
            res[num] = stack[-1] if stack else -1
            stack.append(num)
        return [res[num] for num in nums1]
#H 0 柱状图中最大的矩形。n个非负整数用来表示柱状图中各个柱子的高度。求该柱状图中勾勒出来的矩形的最大面积。
# 在i左侧的小于h的最近元素的下标left右侧的小于h的最近元素的下标right矩形的宽度就是rightleft1
class Solution:
    def largestRectangleArea(self, heights: List[int]) -> int:
        n, heights, st, ans = len(heights), [0] + heights + [0], [], 0
        for i in range(n + 2):
            while st and heights[st[-1]] > heights[i]:
                ans = max(ans, heights[st.pop(-1)] * (i - st[-1] - 1))
            st.append(i)
        return ans
#H 85 Maximal Rectangle/最大矩形 (Hard)
class Solution:
    def maximalRectangle(self, matrix: List[List[str]]) -> int:
        m = len(matrix)
        if m == 0: return 0
        n = len(matrix[0])
        heights = [0] * n
        ans = 0
        for i in range(m):
            for j in range(n):
                if matrix[i][j] == "0":
                    heights[j] = 0
                else:
                    heights[j] += 1
            ans = max(ans, self.largestRectangleArea(heights))
        return ans
#H 315. 计算右侧小于当前元素的个数 困难
# counts[i] 的值是  nums[i] 右侧小于 nums[i] 的元素的数量。输入数组反过来插入一个有序数组(降序)中,插入的位置就是在原数组中位于它右侧的元素的个数。
class Solution:
    def countSmaller(self, nums: List[int]) -> List[int]:
        sortns = []
        res = []
        for n in reversed(nums):
            idx = bisect.bisect_left(sortns, n)
            res.append(idx)
            sortns.insert(idx,n)
        return res[::-1]
#R 找前面比自己小的元素
def find_smaller_elements(nums):
    result = []
    stack = []  # 用于存储元素的值
    for num in nums:
        while stack and stack[-1] >= num:
            stack.pop()
        if not stack:
            result.append(None)  # 如果前面没有比当前元素小的元素,可以用 None 表示
        else:
            result.append(stack[-1])
        stack.append(num)
    return result
#R 503 Next Greater Element II/下一个更大元素 II (Medium)
class Solution:
    def nextGreaterElements(self, nums: List[int]) -> List[int]:
        n = len(nums)
        ans = [-1] * n
        stack = []
        for i in range(n * 2 - 1):
            while stack and nums[i % n] > nums[stack[-1]]:
                ans[stack.pop()] = nums[i % n]
            stack.append(i % n)
        return ans
#R 768 Max Chunks To Make Sorted II/最多能完成排序的块 II (Hard)
# 分割成若干块 ,分别进行排序。之后再连接起来,使得连接的结果和按升序排序后的原数组相同。
# 从左到右每个分块都有一个最大值并且这些分块的最大值呈单调递增非严格递增321 65
class Solution:
    def maxChunksToSorted(self, arr: List[int]) -> int:
        stk = []
        for v in arr:
            if not stk or v >= stk[-1]:
                stk.append(v)
            else:
                mx = stk.pop()
                while stk and stk[-1] > v:
                    stk.pop()
                stk.append(mx)
        return len(stk)

#R 502 IPO (Hard)
# 贪心 + 排序 + 大顶堆:选择当前可启动的最大利润项目
# 利润profits启动该项目需要的最小资本capital。最初你的资本为w,选择最多k个项目
class Solution:
    def findMaximizedCapital(self, k: int, w: int, profits: List[int], capital: List[int]) -> int:
        # 生成索引序列 并 根据资本值对索引进行升序排序 
        n = len(capital)
        indexes = sorted( [i for i in range(n)], key=lambda i: capital[i])    
        pq = []     # 维护堆内利润值的大顶堆
        i = 0
        while k > 0:
            # 将启动资本小于等于当前资本的项目的利润加入大顶堆
            while i < n and capital[indexes[i]] <= w:
                heapq.heappush(pq, -profits[indexes[i]])     # 取相反数实现大顶堆
                i += 1
            if not pq: break     # 没有可以启动的项目,后面启动资本更大的项目也无法启动,退出
            w += -heappop(pq)       # 选择启动资本满足条件的项目中利润最大的那个更新w
            k -= 1
        return w
#R 快速排序
def quick_sort(arr, low=0, high=None):  
    if high is None:  
        high = len(arr) - 1  

    def partition(arr, low, high):  
        pivot = arr[high]    
        i = low - 1  
        for j in range(low, high):  
            # 如果当前元素小于等于基准  
            if arr[j] <= pivot:  
                # 交换元素  
                i += 1  
                arr[i], arr[j] = arr[j], arr[i]  
        # 将基准放到正确位置  
        arr[i + 1], arr[high] = arr[high], arr[i + 1]  
        return i + 1  
    
    def _quick_sort(arr, low, high):  
        if low < high:  
            partition_index = partition(arr, low, high)  
            _quick_sort(arr, low, partition_index - 1)  
            _quick_sort(arr, partition_index + 1, high)  

    _quick_sort(arr, low, high)  
    return arr
#R 堆排序 https://blog.csdn.net/Solititude/article/details/129182217
def heapify(arr, n, i):
    largest = i
    left_child = 2 * i + 1
    right_child = 2 * i + 2
    if left_child < n and arr[left_child] > arr[largest]:
        largest = left_child
    if right_child < n and arr[right_child] > arr[largest]:
        largest = right_child
    if largest != i:
        arr[i], arr[largest] = arr[largest], arr[i]
        heapify(arr, n, largest)
def heap_sort(arr):
    n = len(arr)
    # 构建最大堆
    for i in range(n // 2 - 1, -1, -1):
        heapify(arr, n, i)
    # 逐步取出堆顶元素,进行堆排序
    for i in range(n - 1, 0, -1):
        arr[0], arr[i] = arr[i], arr[0]
        heapify(arr, i, 0)
#R 709.99 Random Pick with Blacklist/黑名单中的随机数 (Hard)
# 选取一个 未加入 黑名单 blacklist 的整数
# 构建一个从 [0,nm) 范围内的黑名单数到 [nm,n) 的白名单数的映射
class Solution:
    def __init__(self, n: int, blacklist: List[int]):
        m = len(blacklist)
        self.bound = w = n - m
        black = {b for b in blacklist if b >= self.bound}
        self.b2w = {}
        for b in blacklist:
            if b < self.bound:
                while w in black:
                    w += 1
                self.b2w[b] = w
                w += 1
    def pick(self) -> int:
        x = randrange(self.bound)
        return self.b2w.get(x, x)

累加和

#R 862. Shortest Subarray with Sum at Least K
import heapq
def shortestSubarray(nums, k):
    # 初始化结果为正无穷大累加和为0优先队列用于保存累加和及其对应的下标
    res = float('inf')
    sum_val = 0
    pq = [(0, -1)]
    for i in range(len(nums)):
        # 计算当前位置的累加和
        sum_val += nums[i]
        # 检查队列中是否有满足条件的累加和,如果有,更新结果
        while pq and sum_val - pq[0][0] >= k:
            res = min(res, i - pq[0][1])
            heapq.heappop(pq)
        # 将当前累加和及其下标加入队列
        heapq.heappush(pq, (sum_val, i))
    # 如果结果仍然是正无穷大,说明没有符合条件的子数组
    return -1 if res == float('inf') else res
#H 负二进制加法/Adding Two Negabinary Numbers
# 如果 x≥2那么将 x 减去 2并向高位进位 1。即逢 2 进负 1。
# 如果 x=1由于 (2)^i=(2)^i +(2)^{i+1},所以我们可以将 x 置为 1并向高位进位 1。
class Solution:
    def addNegabinary(self, arr1: List[int], arr2: List[int]) -> List[int]:
        i, j = len(arr1) - 1, len(arr2) - 1
        c = 0
        ans = []
        while i >= 0 or j >= 0 or c:
            a = 0 if i < 0 else arr1[i]
            b = 0 if j < 0 else arr2[j]
            x = a + b + c
            c = 0
            if x >= 2:
                x -= 2
                c -= 1
            elif x == -1:
                x = 1
                c += 1
            ans.append(x)
            i, j = i - 1, j - 1
        while len(ans) > 1 and ans[-1] == 0:
            ans.pop()
        return ans[::-1]
#R 二叉树的迭代遍历
# 前序遍历-迭代-LC144_二叉树的前序遍历
class Solution:
    def preorderTraversal(self, root: TreeNode) -> List[int]:
        # 根结点为空则返回空列表
        if not root:
            return []
        stack = [root]
        result = []
        while stack:
            node = stack.pop()
            # 中结点先处理
            result.append(node.val)
            # 右孩子先入栈
            if node.right:
                stack.append(node.right)
            # 左孩子后入栈
            if node.left:
                stack.append(node.left)
        return result
#R 中序遍历-迭代-LC94_二叉树的中序遍历
class Solution:
    def inorderTraversal(self, root: TreeNode) -> List[int]:
        if not root:
            return []
        stack = []  # 不能提前将root结点加入stack中
        result = []
        cur = root
        while cur or stack:
            # 先迭代访问最底层的左子树结点
            if cur:     
                stack.append(cur)
                cur = cur.left		
            # 到达最左结点后处理栈顶结点    
            else:		
                cur = stack.pop()
                result.append(cur.val)
                # 取栈顶元素右结点
                cur = cur.right	
        return result
#R 102.二叉树的层序遍历
# 利用长度法
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
        if not root:
            return []
        queue = collections.deque([root])
        result = []
        while queue:
            level = []
            for _ in range(len(queue)):
                cur = queue.popleft()
                level.append(cur.val)
                if cur.left:
                    queue.append(cur.left)
                if cur.right:
                    queue.append(cur.right)
            result.append(level)
        return result
#R 671. 二叉树中第二小的节点。
# 给定一个非空特殊的二叉树,每个节点都是正数,并且每个节点的子节点数量只能为 2 或 0。如果一个节点有两个子节点的话那么该节点的值等于两个子节点中较小的一个。
class Solution:
    def findSecondMinimumValue(self, root: TreeNode) -> int:
        if not root or not root.left:
            return -1
        # 我们知道root.val是最小值那么
        # 第二小的值存在于 更小的子节点那一边的子树的第二小的值 或 更大的子节点 之中
        left = root.left.val if root.left.val != root.val else self.findSecondMinimumValue(root.left)
        right = root.right.val if root.right.val != root.val else self.findSecondMinimumValue(root.right)
        return min(left, right) if left != -1 and right != -1 else max(left, right)
#R 208 前缀树是一种特殊的多叉树,它的 TrieNode 中 chidren 是一个大小为 26 的一维数组分别对应了26个英文字符  void insert(String word) 向前缀树中插入字符串 wordsearch(String word) 如果字符串 word 在前缀树中,返回 true在检索之前已经插入否则返回 false 。 startsWith 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。
class Trie:
    def __init__(self):
        self.children = [None] * 26
        self.isEnd = False
    def searchPrefix(self, prefix: str) -> "Trie":
        node = self
        for ch in prefix:
            ch = ord(ch) - ord("a")
            if not node.children[ch]:
                return None
            node = node.children[ch]
        return node
    def insert(self, word: str) -> None:
        node = self
        for ch in word:
            ch = ord(ch) - ord("a")
            if not node.children[ch]:
                node.children[ch] = Trie()
            node = node.children[ch]
        node.isEnd = True
    def search(self, word: str) -> bool:
        node = self.searchPrefix(word)
        return node is not None and node.isEnd
    def startsWith(self, prefix: str) -> bool:
        return self.searchPrefix(prefix) is not None
#R 1032. Stream of Characters 接收一个字符流,并检查这些字符的后缀是否是字符串数组 words 中的一个字符串。
class Trie:
    def __init__(self):
        self.children = [None] * 26
        self.is_end = False
    def insert(self, w: str):
        node = self
        for c in w[::-1]:
            idx = ord(c) - ord('a')
            if node.children[idx] is None:
                node.children[idx] = Trie()
            node = node.children[idx]
        node.is_end = True
    def search(self, w: List[str]) -> bool:
        node = self
        for c in w[::-1]:
            idx = ord(c) - ord('a')
            if node.children[idx] is None:
                return False
            node = node.children[idx]
            if node.is_end:
                return True
        return False
class StreamChecker:
    def __init__(self, words: List[str]):
        self.trie = Trie()
        self.cs = []
        self.limit = 201
        for w in words:
            self.trie.insert(w)
    def query(self, letter: str) -> bool:
        self.cs.append(letter)
        return self.trie.search(self.cs[-self.limit:])
# Your StreamChecker object will be instantiated and called as such:
# obj = StreamChecker(words)
# param_1 = obj.query(letter)
#R 124 Binary Tree Maximum Path Sum/二叉树中的最大路径和 (Hard)
# 输入root = [1,2,3], 最优路径是 2 -> 1 -> 3
# 链:从下面的某个节点(不一定是叶子)到当前节点的路径。把这条链的节点值之和,作为 dfs 的返回值。如果节点值之和是负数,则返回 0。
# 直径:等价于由两条(或者一条)链拼成的路径。我们枚举每个 node假设直径在这里「拐弯」也就是计算由左右两条从下面的某个节点不一定是叶子到 node 的链的节点值之和,去更新答案的最大值。
# dfs 返回的是链的节点值之和,不是直径的节点值之和。
class Solution:
    def maxPathSum(self, root: Optional[TreeNode]) -> int:
        ans = -inf
        def dfs(node: Optional[TreeNode]) -> int:
            if node is None:
                return 0  # 没有节点,和为 0
            l_val = dfs(node.left)  # 左子树最大链和
            r_val = dfs(node.right)  # 右子树最大链和
            nonlocal ans
            ans = max(ans, l_val + r_val + node.val)  # 两条链拼成路径
            return max(max(l_val, r_val) + node.val, 0)  # 当前子树最大链和(注意这里和 0 取最大值了)
        dfs(root)
        return ans
#R 297 Serialize and Deserialize Binary Tree/二叉树的序列化与反序列化 (Medium)
# 序列化 使用层序遍历实现。反序列化通过递推公式反推各节点在序列中的索引
class Codec:
    def serialize(self, root):
        if not root: return "[]"
        queue = collections.deque()
        queue.append(root)
        res = []
        while queue:
            node = queue.popleft()
            if node:
                res.append(str(node.val))
                queue.append(node.left)
                queue.append(node.right)
            else: res.append("null")
        return '[' + ','.join(res) + ']'

    def deserialize(self, data):
        if data == "[]": return
        vals, i = data[1:-1].split(','), 1
        root = TreeNode(int(vals[0]))
        queue = collections.deque()
        queue.append(root)
        while queue:
            node = queue.popleft()
            if vals[i] != "null":
                node.left = TreeNode(int(vals[i]))
                queue.append(node.left)
            i += 1
            if vals[i] != "null":
                node.right = TreeNode(int(vals[i]))
                queue.append(node.right)
            i += 1
        return root
#R 366 Find Leaves of Binary Tree $/寻找二叉树的叶子节点 (Medium)
# 收集所有的叶子节点;移除所有的叶子节点;重复以上步骤,直到树为空。 高度代表倒数第几个叶子节点
class Solution:
    def findLeaves(self, root: TreeNode) -> List[List[int]]:
        # 自底向上递归
        def dfs(root):
            if not root:return 0
            l,r=dfs(root.left),dfs(root.right)
            depth=max(l,r)+1
            res[depth].append(root.val)
            return depth

        res=collections.defaultdict(list)
        dfs(root)
        return [v for v in res.values()]
#R 652 Find Duplicate Subtrees/寻找重复的子树 (Medium)
# 递归的方法进行序列化
class Solution:
    def findDuplicateSubtrees(self, root: Optional[TreeNode]) -> List[Optional[TreeNode]]:
        def dfs(node: Optional[TreeNode]) -> str:
            if not node:
                return ""
            serial = "".join([str(node.val), "(", dfs(node.left), ")(", dfs(node.right), ")"])
            if (tree := seen.get(serial, None)):
                repeat.add(tree)
            else:
                seen[serial] = node
            return serial        
        seen = dict()
        repeat = set()
        dfs(root)
        return list(repeat)
#R 0 My Calendar II/我的日程安排表 II (Medium)
# 如果要添加的时间内不会导致三重预订时,则可以存储这个新的日程安排。
class MyCalendarTwo:
    def __init__(self):
        self.booked = []
        self.overlaps = []
    def book(self, start: int, end: int) -> bool:
        if any(s < end and start < e for s, e in self.overlaps):
            return False
        # 注意两个区间不相交的补=s < end and start < e
        for s, e in self.booked:
            if s < end and start < e:
                self.overlaps.append((max(s, start), min(e, end)))
        self.booked.append((start, end))
        return True
#R 987 Vertical Order Traversal of a Binary Tree/二叉树的垂序遍历 (Medium)
class Solution:
    def verticalTraversal(self, root: Optional[TreeNode]) -> List[List[int]]:
        groups = defaultdict(list)
        def dfs(node, row, col): #二叉树先序遍历
            if node is None:
                return
            groups[col].append((row, node.val))  # col 相同的分到同一组
            dfs(node.left, row + 1, col - 1)
            dfs(node.right, row + 1, col + 1)
        
        dfs(root, 0, 0)
        ans = []
        for _, g in sorted(groups.items()):
            g.sort()  # 按照 row 排序row 相同按照 val 排序
            ans.append([val for _, val in g])
        return ans

回溯算法

组合

#R 216.组合总和III
# [1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合
class Solution:
    def combinationSum3(self, k: int, n: int) -> List[List[int]]:
        result = []  # 存放结果集
        self.backtracking(n, k, 0, 1, [], result)
        return result
    def backtracking(self, targetSum, k, currentSum, startIndex, path, result):
        if currentSum > targetSum:  # 剪枝操作
            return  # 如果path的长度等于k但currentSum不等于targetSum则直接返回
        if len(path) == k:
            if currentSum == targetSum:
                result.append(path[:])
            return
        for i in range(startIndex, 9 - (k - len(path)) + 2):  # 剪枝
            currentSum += i  # 处理
            path.append(i)  # 处理
            self.backtracking(targetSum, k, currentSum, i + 1, path, result)  # 注意i+1调整startIndex
            currentSum -= i  # 回溯
            path.pop()  # 回溯
#R 40.组合总和II
# 数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的每个数字在每个组合中只能使用一次。
class Solution:
    def backtracking(self, candidates, target, total, startIndex, used, path, result):
        if total == target:
            result.append(path[:])
            return
        for i in range(startIndex, len(candidates)):
            # 对于相同的数字,只选择第一个未被使用的数字,跳过其他相同数字
            if i > startIndex and candidates[i] == candidates[i - 1] and not used[i - 1]:
                continue
            if total + candidates[i] > target:
                break
            total += candidates[i]
            path.append(candidates[i])
            used[i] = True
            self.backtracking(candidates, target, total, i + 1, used, path, result)
            used[i] = False
            total -= candidates[i]
            path.pop()
    def combinationSum2(self, candidates, target):
        used = [False] * len(candidates)
        result = []
        candidates.sort()
        self.backtracking(candidates, target, 0, 0, used, [], result)
        return result

分割

#R 131.分割回文串
# 将 s 分割成一些子串,使每个子串都是回文串
class Solution:
    def partition(self, s: str) -> List[List[str]]:
        # 递归用于纵向遍历; for循环用于横向遍历; 当切割线迭代至字符串末尾,说明找到一种方法; 类似组合问题为了不重复切割同一位置需要start_index来做标记下一轮递归的起始位置(切割线)
        result = []
        self.backtracking(s, 0, [], result)
        return result
    def backtracking(self, s, start_index, path, result ):
        # Base Case
        if start_index == len(s):
            result.append(path[:])
            return
        # 单层递归逻辑
        for i in range(start_index, len(s)):
            # 此次比其他组合题目多了一步判断:
            # 判断被截取的这一段子串([start_index, i])是否为回文串
            if self.is_palindrome(s, start_index, i):
                path.append(s[start_index:i+1])
                self.backtracking(s, i+1, path, result)   # 递归纵向遍历:从下一处进行切割,判断其余是否仍为回文串
                path.pop()             # 回溯
    def is_palindrome(self, s: str, start: int, end: int) -> bool:
        i: int = start        
        j: int = end
        while i < j:
            if s[i] != s[j]:
                return False
            i += 1
            j -= 1
        return True 
#R 93.复原IP地址
class Solution:
    def restoreIpAddresses(self, s: str) -> List[str]:
        result = []
        self.backtracking(s, 0, 0, "", result)
        return result
    def backtracking(self, s, start_index, point_num, current, result):
        if point_num == 3:  # 逗点数量为3时分隔结束
            if self.is_valid(s, start_index, len(s) - 1):  # 判断第四段子字符串是否合法
                current += s[start_index:]  # 添加最后一段子字符串
                result.append(current)
            return
        for i in range(start_index, len(s)):
            if self.is_valid(s, start_index, i):  # 判断 [start_index, i] 这个区间的子串是否合法
                sub = s[start_index:i + 1]
                self.backtracking(s, i + 1, point_num + 1, current + sub + '.', result)
            else:
                break
    def is_valid(self, s, start, end):
        if start > end:
            return False
        if s[start] == '0' and start != end:  # 0开头的数字不合法
            return False
        num = 0
        for i in range(start, end + 1):
            if not s[i].isdigit():  # 遇到非数字字符不合法
                return False
            num = num * 10 + int(s[i])
            if num > 255:  # 如果大于255了不合法
                return False
        return True

子集

#R 90.子集II
# 可能包含重复元素的整数数组 nums返回该数组所有可能的子集幂集。 解集不能包含重复的子集。
class Solution:
    def subsetsWithDup(self, nums):
        result = []
        path = []
        used = [False] * len(nums)
        nums.sort()  # 去重需要排序
        self.backtracking(nums, 0, used, path, result)
        return result
    def backtracking(self, nums, startIndex, used, path, result):
        result.append(path[:])  # 收集子集
        for i in range(startIndex, len(nums)):
            # used[i - 1] == True说明同一树枝 nums[i - 1] 使用过
            # used[i - 1] == False说明同一树层 nums[i - 1] 使用过
            # 而我们要对同一树层使用过的元素进行跳过
            if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]:
                continue
            path.append(nums[i])
            used[i] = True
            self.backtracking(nums, i + 1, used, path, result)
            used[i] = False
            path.pop()
#R 491.递增子序列
# 数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。 利用set去重
class Solution:
    def findSubsequences(self, nums):
        result = []
        path = []
        self.backtracking(nums, 0, path, result)
        return result
    def backtracking(self, nums, startIndex, path, result):
        if len(path) > 1:
            result.append(path[:])  # 注意要使用切片将当前路径的副本加入结果集
            # 注意这里不要加return要取树上的节点
        
        uset = set()  # 使用集合对本层元素进行去重
        for i in range(startIndex, len(nums)):
            if (path and nums[i] < path[-1]) or nums[i] in uset:
                continue
            
            uset.add(nums[i])  # 记录这个元素在本层用过了,本层后面不能再用了
            path.append(nums[i])
            self.backtracking(nums, i + 1, path, result)
            path.pop()

排列

#R 47.全排列 II
# 可包含重复数字的序列 ,返回所有不重复的全排列
class Solution:
    def permuteUnique(self, nums):
        nums.sort()  # 排序
        result = []
        self.backtracking(nums, [], [False] * len(nums), result)
        return result
    def backtracking(self, nums, path, used, result):
        if len(path) == len(nums):
            result.append(path[:])
            return
        for i in range(len(nums)):
            if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]:
                continue
            used[i] = True
            path.append(nums[i])
            self.backtracking(nums, path, used, result)
            path.pop()
            used[i] = False

棋盘

#R 51. N皇后
class Solution:
    def solveNQueens(self, n: int) -> List[List[str]]:
        result = []  # 存储最终结果的二维字符串数组
        chessboard = ['.' * n for _ in range(n)]  # 初始化棋盘
        self.backtracking(n, 0, chessboard, result)  # 回溯求解
        return [[''.join(row) for row in solution] for solution in result]  # 返回结果集
    def backtracking(self, n: int, row: int, chessboard: List[str], result: List[List[str]]) -> None:
        if row == n:
            result.append(chessboard[:])  # 棋盘填满,将当前解加入结果集
            return
        for col in range(n):
            if self.isValid(row, col, chessboard):
                chessboard[row] = chessboard[row][:col] + 'Q' + chessboard[row][col+1:]  # 放置皇后
                self.backtracking(n, row + 1, chessboard, result)  # 递归到下一行
                chessboard[row] = chessboard[row][:col] + '.' + chessboard[row][col+1:]  # 回溯,撤销当前位置的皇后
    def isValid(self, row: int, col: int, chessboard: List[str]) -> bool:
        # 检查列
        for i in range(row):
            if chessboard[i][col] == 'Q':
                return False  # 当前列已经存在皇后,不合法
        # 检查 45 度角是否有皇后
        i, j = row - 1, col - 1
        while i >= 0 and j >= 0:
            if chessboard[i][j] == 'Q':
                return False  # 左上方向已经存在皇后,不合法
            i -= 1
            j -= 1
        # 检查 135 度角是否有皇后
        i, j = row - 1, col + 1
        while i >= 0 and j < len(chessboard):
            if chessboard[i][j] == 'Q':
                return False  # 右上方向已经存在皇后,不合法
            i -= 1
            j += 1
        return True  # 当前位置合法
#R 37. 解数独
class Solution:
    def solveSudoku(self, board: List[List[str]]) -> None:
        """
        Do not return anything, modify board in-place instead.
        """
        self.backtracking(board)
    def backtracking(self, board: List[List[str]]) -> bool:
        # 若有解返回True若无解返回False
        for i in range(len(board)): # 遍历行
            for j in range(len(board[0])):  # 遍历列
                # 若空格内已有数字,跳过
                if board[i][j] != '.': continue
                for k in range(1, 10):
                    if self.is_valid(i, j, k, board):
                        board[i][j] = str(k)
                        if self.backtracking(board): return True
                        board[i][j] = '.'
                # 若数字1-9都不能成功填入空格返回False无解
                return False
        return True # 有解
    def is_valid(self, row: int, col: int, val: int, board: List[List[str]]) -> bool:
        # 判断同一行是否冲突
        for i in range(9):
            if board[row][i] == str(val):
                return False
        # 判断同一列是否冲突
        for j in range(9):
            if board[j][col] == str(val):
                return False
        # 判断同一九宫格是否有冲突
        start_row = (row // 3) * 3
        start_col = (col // 3) * 3
        for i in range(start_row, start_row + 3):
            for j in range(start_col, start_col + 3):
                if board[i][j] == str(val):
                    return False
        return True

其他

#R 282 Expression Add Operators/给表达式添加运算符 (Hard)
# 输入: num = "123", target = 6 输出: ["1+2+3", "1*2*3"] 
# 每个字符与字符实际上有四种连接方式,加减乘和拼接
class Solution:
    def addOperators(self, num: str, target: int) -> List[str]:
        def backtrace(idx: int, cursum: int, preadd: int) -> None:
            nonlocal res
            nonlocal path
            if idx == n:
                if cursum == target:
                    res.append(path[:])
                return    
            pn = len(path)
            for i in range(idx, n):
                x_str = num[idx: i + 1]
                x = int(x_str)              
                if idx == 0:
                    path += x_str
                    backtrace(i + 1, cursum + x, x)
                    path = path[ :pn]
                else:
                    path += '+' + x_str
                    backtrace(i + 1, cursum + x, x)
                    path = path[ :pn]
                    path += '-' + x_str
                    backtrace(i + 1, cursum - x, -x)
                    path = path[ :pn]
                    path += '*' + x_str
                    backtrace(i + 1, cursum - preadd + preadd * x, preadd * x)
                    path = path[ :pn]
                if x == 0:
                    return
        n = len(num)
        res = []
        path = ""
        backtrace(0, 0, 0)
        return res
#R 698 Partition to K Equal Sum Subsets/划分为k个相等的子集 (Medium)
class Solution:
    def canPartitionKSubsets(self, nums: List[int], k: int) -> bool:
        def dfs(i):
            if i == len(nums):
                return True
            for j in range(k):
                if j and cur[j] == cur[j - 1]:
                    continue
                cur[j] += nums[i]
                if cur[j] <= s and dfs(i + 1):
                    return True
                cur[j] -= nums[i]
            return False
        s, mod = divmod(sum(nums), k)
        if mod:
            return False
        cur = [0] * k
        nums.sort(reverse=True)
        return dfs(0)

图Visited

#R Most Stones Removed with Same Row or Column/移除最多的同行或同列石头(Medium)
# 石头放在整数坐标点上, move操作移除某一块石头共享一列或一行的一块石头,最多能执行多少次 move
class Solution:
    def removeStones(self, stones: List[List[int]]) -> int:
        # 构建图
        graph = collections.defaultdict(list)
        for i, (x, y) in enumerate(stones):
            for j, (xx, yy) in enumerate(stones):
                if x == xx or y == yy:
                    graph[i].append(j)
        # DFS计算连通分量数量
        def dfs(node):
            visited.add(node)
            for neighbor in graph[node]:
                if neighbor not in visited:
                    dfs(neighbor)
        n = len(stones)
        visited = set()
        components = 0
        for i in range(n):
            if i not in visited:
                components += 1
                dfs(i)
        return n - components
#R 200. Number of Islands 给定一个由 '1'(陆地)和 '0'(水)组成的二维网格,计算岛屿的数量。岛屿是由相邻的陆地水平或垂直连接形成的(不包括对角线)。你可以假设网格的四个边都被水包围。
class Solution:
    def numIslands(self, grid: List[List[str]]) -> int:
        if not grid or not grid[0]:
            return 0
        rows, cols = len(grid), len(grid[0])
        islands = 0
        def dfs(row, col):
            if 0 <= row < rows and 0 <= col < cols and grid[row][col] == '1':
                grid[row][col] = '0'  # 标记为已访问
                # 递归搜索相邻的陆地
                dfs(row - 1, col)
                dfs(row + 1, col)
                dfs(row, col - 1)
                dfs(row, col + 1)
        for row in range(rows):
            for col in range(cols):
                if grid[row][col] == '1':
                    islands += 1
                    dfs(row, col)
        return islands
#R (hard) 单词接龙,从单词 beginWord 和 endWord 的转换序列每次转换只能改变一个字母wordList = ["hot","dot","dog"]
class Solution:
    def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int:
        wordSet = set(wordList)
        if len(wordSet)== 0 or endWord not in wordSet:
            return 0
        mapping = {beginWord:1}
        queue = deque([beginWord]) 
        while queue:
            word = queue.popleft()
            path = mapping[word]
            for i in range(len(word)):
                word_list = list(word)
                for j in range(26):
                    word_list[i] = chr(ord('a')+j)
                    newWord = "".join(word_list)
                    if newWord == endWord:
                        return path+1
                    if newWord in wordSet and newWord not in mapping:
                        mapping[newWord] = path+1
                        queue.append(newWord)                      
        return 0
#R 463. 岛屿的周长
class Solution:
    def islandPerimeter(self, grid: List[List[int]]) -> int:
        m = len(grid)
        n = len(grid[0])
        # 创建res二维素组记录答案
        res = [[0] * n for j in range(m)]
        for i in range(m):
            for j in range(len(grid[i])):
                # 如果当前位置为水域不做修改或reset res[i][j] = 0
                if grid[i][j] == 0:
                    res[i][j] = 0
                # 如果当前位置为陆地往四个方向判断update res[i][j]
                elif grid[i][j] == 1:
                    if i == 0 or (i > 0 and grid[i-1][j] == 0):
                        res[i][j] += 1
                    if j == 0 or (j >0 and grid[i][j-1] == 0):
                        res[i][j] += 1
                    if i == m-1 or (i < m-1 and grid[i+1][j] == 0):
                        res[i][j] += 1
                    if j == n-1 or (j < n-1 and grid[i][j+1] == 0):
                        res[i][j] += 1
        # 最后求和res矩阵这里其实不一定需要矩阵记录可以设置一个variable res 记录边长,舍矩阵无非是更加形象而已
        ans = sum([sum(row) for row in res])
        return ans
#R 1091. Shortest Path in Binary Matrix/二进制矩阵中的最短路径(Medium)
class Solution:
    def shortestPathBinaryMatrix(self, grid: List[List[int]]) -> int:
        if grid[0][0]:
            return -1
        n = len(grid)
        grid[0][0] = 1
        q = deque([(0, 0)])
        ans = 1
        while q:
            for _ in range(len(q)):
                i, j = q.popleft()
                if i == j == n - 1:
                    return ans
                for x in range(i - 1, i + 2):
                    for y in range(j - 1, j + 2):
                        if 0 <= x < n and 0 <= y < n and grid[x][y] == 0:
                            grid[x][y] = 1
                            q.append((x, y))
            ans += 1
        return -1
#R 210 Course Schedule II/课程表 II (Medium)
# 返回你为了学完所有课程所安排的学习顺序indeg 存储每个节点的入度
class Solution:
    def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
        g = defaultdict(list)
        indeg = [0] * numCourses
        for a, b in prerequisites:
            g[b].append(a)
            indeg[a] += 1
        ans = []
        q = deque(i for i, x in enumerate(indeg) if x == 0)
        while q:
            i = q.popleft()
            ans.append(i)
            for j in g[i]:
                indeg[j] -= 1
                if indeg[j] == 0:
                    q.append(j)
        return ans if len(ans) == numCourses else []
#R 329 Longest Increasing Path in a Matrix/矩阵中的最长递增路径 (Medium)
class Solution:
    def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
        m, n = len(matrix), len(matrix[0])
        flag = [[-1] * n for _ in range(m)] #存储从ij出发的最长递归路径

        def dfs(i, j):
            if flag[i][j] != -1: # 记忆化搜索,避免重复的计算
                return flag[i][j]
            else:
                d = 1
                for (x, y) in [[-1, 0], [1, 0], [0, 1], [0, -1]]:
                    x, y = i + x, j + y
                    if 0 <= x < m and 0 <= y < n and matrix[x][y] > matrix[i][j]:
                        d = max(d, dfs(x, y) + 1) # 取四个邻接点的最长
                flag[i][j] = d
                return d

        res = 0
        for i in range(m): # 遍历矩阵计算最长路径
            for j in range(n):
                if flag[i][j] == -1:
                    res = max(res, dfs(i, j))
        return res
#R 743 Network Delay Time/网络延迟时间 (Medium)
# 从某个节点 K 发出一个信号。需要多久才能使所有节点都收到信号 Dijkstra 算法
class Solution:
    def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int:
        g = [[float('inf')] * n for _ in range(n)]
        for x, y, time in times:
            g[x - 1][y - 1] = time
        dist = [float('inf')] * n
        dist[k - 1] = 0
        used = [False] * n
        for _ in range(n):
            x = -1
            for y, u in enumerate(used):
                if not u and (x == -1 or dist[y] < dist[x]):
                    x = y
            used[x] = True
            for y, time in enumerate(g[x]):
                dist[y] = min(dist[y], dist[x] + time)
        ans = max(dist)
        return ans if ans < float('inf') else -1
#R 827 Making A Large Island/最大人工岛 (Hard)
# 最多 只能将一格 0 变成 1 
class Solution:
    def largestIsland(self, grid: List[List[int]]) -> int:
        n = len(grid)
        def dfs(i: int, j: int) -> int:
            size = 1
            grid[i][j] = len(area) + 2  # 记录 (i,j) 属于哪个岛
            for x, y in (i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1):
                if 0 <= x < n and 0 <= y < n and grid[x][y] == 1:
                    size += dfs(x, y)
            return size
        # DFS 每个岛,统计各个岛的面积,记录到 area 列表中
        area = []
        for i, row in enumerate(grid):
            for j, x in enumerate(row):
                if x == 1:
                    area.append(dfs(i, j))
        # 加上这个特判,可以快很多
        if not area:  # 没有岛
            return 1
        ans = 0
        for i, row in enumerate(grid):
            for j, x in enumerate(row):
                if x: continue
                s = set()
                for x, y in (i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1):
                    if 0 <= x < n and 0 <= y < n and grid[x][y]:
                        s.add(grid[x][y])  # 记录上下左右格子所属岛屿编号
                ans = max(ans, sum(area[idx - 2] for idx in s) + 1)  # 累加面积
        return ans if ans else n * n   # 如果最后 ans 仍然为 0说明所有格子都是 1返回 n^2
#R 0 Get Watched Videos by Your Friends/获取你好友已观看的视频 (Medium)
# watchedVideos[i]  和 friends[i] 分别表示 id = i 的人观看过的视频列表和他的好友列表。找出所有指定 level 的视频
class Solution:
    def watchedVideosByFriends(self, watchedVideos, friends, id, level):
        n = len(friends)
        used = [False] * n
        q = collections.deque([id])
        used[id] = True
        for _ in range(level):
            span = len(q)
            for i in range(span):
                u = q.popleft()
                for v in friends[u]:
                    if not used[v]:
                        q.append(v)
                        used[v] = True
        freq = collections.Counter()
        for _ in range(len(q)):
            u = q.pop()
            for watched in watchedVideos[u]:
                freq[watched] += 1
        videos = list(freq.items())
        videos.sort(key=lambda x: (x[1], x[0]))
        ans = [video[0] for video in videos]
        return ans
#R 1761 Minimum Degree of a Connected Trio in a Graph/一个图中连通三元组的最小度数 (困难)  
# 连通三元组的度数 是所有满足此条件的边的数目:一个顶点在这个三元组内,而另一个顶点不在这个三元组内。返回所有连通三元组中度数的 最小值
class Solution:
    def minTrioDegree(self, n: int, edges: List[List[int]]) -> int:
        g = [[False] * n for _ in range(n)]
        deg = [0] * n
        for u, v in edges:
            u, v = u - 1, v - 1
            g[u][v] = g[v][u] = True
            deg[u] += 1
            deg[v] += 1
        ans = inf
        for i in range(n):
            for j in range(i + 1, n):
                if g[i][j]:
                    for k in range(j + 1, n):
                        if g[i][k] and g[j][k]:
                            ans = min(ans, deg[i] + deg[j] + deg[k] - 6)
        return -1 if ans == inf else ans

动态规划

简单

#R 背包问题
def test_2_ei_bag_problem1(weight, value, bagweight):
    # 二维数组
    dp = [[0] * (bagweight + 1) for _ in range(len(weight))]
    # 初始化
    for j in range(weight[0], bagweight + 1):
        dp[0][j] = value[0]
    # weight数组的大小就是物品个数
    for i in range(1, len(weight)):  # 遍历物品
        for j in range(bagweight + 1):  # 遍历背包容量
            if j < weight[i]:
                dp[i][j] = dp[i - 1][j]
            else:
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])
    return dp[len(weight) - 1][bagweight]
#R 零钱兑换 计算可以凑成总金额所需的最少的硬币个数。
class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        n = len(coins)
        dp = [[amount+1] * (amount+1) for _ in range(n+1)]    # 初始化为一个较大的值,如 +inf 或 amount+1
        # 合法的初始化
        dp[0][0] = 0    # 其他 dp[0][j]均不合法
        # 完全背包:优化后的状态转移
        for i in range(1, n+1):             # 第一层循环:遍历硬币
            for j in range(amount+1):       # 第二层循环:遍历背包
                if j < coins[i-1]:          # 容量有限无法选择第i种硬币
                    dp[i][j] = dp[i-1][j]
                else:                       # 可选择第i种硬币
                    dp[i][j] = min( dp[i-1][j], dp[i][j-coins[i-1]] + 1 )
        ans = dp[n][amount] 
        return ans if ans != amount+1 else -1
#R 1.   买卖股票的最佳时机
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        length = len(prices)
        if len == 0:
            return 0
        dp = [[0] * 2 for _ in range(length)]
        dp[0][0] = -prices[0]
        dp[0][1] = 0
        for i in range(1, length):
            dp[i][0] = max(dp[i-1][0], -prices[i])
            dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0])
        return dp[-1][1]
#R 122.买卖股票的最佳时机II
# 可以尽可能地完成更多的交易,不能同时参与多笔交易
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        length = len(prices)
        dp = [[0] * 2 for _ in range(length)]
        dp[0][0] = -prices[0]
        dp[0][1] = 0
        for i in range(1, length):
            dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]) #注意这里是和121. 买卖股票的最佳时机唯一不同的地方
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])
        return dp[-1][1]
#R 0 买卖股票的最佳时机含手续费
class Solution:
    def maxProfit(self, prices: List[int], fee: int) -> int:
        n = len(prices)
        dp = [[0] * 2 for _ in range(n)]
        dp[0][0] = -prices[0] #持股票
        for i in range(1, n):
            dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee)
        return max(dp[-1][0], dp[-1][1])
#R 123.买卖股票的最佳时机III 最多可以完成 两笔 交易。
# 0 没有操作 (其实我们也可以不设置这个状态); 1 第一次持有股票; 2 第一次不持有股票
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if len(prices) == 0:
            return 0
        dp = [[0] * 5 for _ in range(len(prices))]
        dp[0][1] = -prices[0]
        dp[0][3] = -prices[0]
        for i in range(1, len(prices)):
            dp[i][0] = dp[i-1][0]
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
            dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i])
            dp[i][3] = max(dp[i-1][3], dp[i-1][2] - prices[i])
            dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i])
        return dp[-1][4]
#R 188.买卖股票的最佳时机IV
最多可以完成 k 笔交易
class Solution:
    def maxProfit(self, k: int, prices: List[int]) -> int:
        if len(prices) == 0:
            return 0
        dp = [[0] * (2*k+1) for _ in range(len(prices))]
        for j in range(1, 2*k, 2):
            dp[0][j] = -prices[0]
        for i in range(1, len(prices)):
            for j in range(0, 2*k-1, 2):
                dp[i][j+1] = max(dp[i-1][j+1], dp[i-1][j] - prices[i])
                dp[i][j+2] = max(dp[i-1][j+2], dp[i-1][j+1] + prices[i])
        return dp[-1][2*k]
#R 1.   股票最佳买卖股票时机含冷冻期
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if not prices:
            return 0
        n = len(prices)
        # f[i][0]: 手上持有股票的最大收益
        # f[i][1]: 手上不持有股票,并且处于冷冻期中的累计最大收益
        # f[i][2]: 手上不持有股票,并且不在冷冻期中的累计最大收益
        f = [[-prices[0], 0, 0]] + [[0] * 3 for _ in range(n - 1)]
        for i in range(1, n):
            f[i][0] = max(f[i - 1][0], f[i - 1][2] - prices[i])
            f[i][1] = f[i - 1][0] + prices[i]
            f[i][2] = max(f[i - 1][1], f[i - 1][2])
        return max(f[n - 1][1], f[n - 1][2])

子序列系列

#R 0 不同的子序列
#  s 的子序列中 t 出现的个数
class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
        for i in range(len(s)):
            dp[i][0] = 1
        for j in range(1, len(t)):
            dp[0][j] = 0
        for i in range(1, len(s)+1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j]
        return dp[-1][-1]
#R 0 最长回文子序列
class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        dp = [[0] * len(s) for _ in range(len(s))]
        for i in range(len(s)):
            dp[i][i] = 1
        for i in range(len(s)-1, -1, -1):
            for j in range(i+1, len(s)):
                if s[i] == s[j]:
                    dp[i][j] = dp[i+1][j-1] + 2
                else:
                    dp[i][j] = max(dp[i+1][j], dp[i][j-1])
        return dp[0][-1]
#R 33.9 Wildcard Matching/通配符匹配 (Hard)
# '?' 可以匹配任何单个字符。'*' 可以匹配任意字符序列(包括空字符序列)。
class Solution:
    def isMatch(self, s: str, p: str) -> bool:
        m, n = len(s), len(p)
        f = [[False] * (n + 1) for _ in range(m + 1)]
        # 初始条件:翻译自递归边界
        # 对应边界 i<0 and j < 0 return True
        f[0][0] = True
        # 对应边界 i<0 j>=0的处理
        for j in range(n):
            f[0][j + 1] = p[j] == '*' and f[0][j]
        # 对应边界 j<0 (f初始化已经赋值了False, 不用写)
        for i in range(m):
            for j in range(n):
                if s[i] == p[j] or p[j] == '?':
                    f[i + 1][j + 1] = f[i][j]
                elif p[j] == '*':
                    f[i + 1][j + 1] = f[i][j + 1] or f[i + 1][j]
        return f[m][n]
#R 91 Decode Ways/解码方法 (Medium)
# "12" 可以解码为 "AB"1 2或者 "L"12  时间复杂度O(n),空间复杂度O(n)
class Solution:
    def numDecodings(self, s: str) -> int:
        size = len(s)
        #特判
        if size == 0:
            return 0
        dp = [0]*(size+1)
        dp[0] = 1 
        for i in range(1,size+1):
            t = int(s[i-1])
            if t>=1 and t<=9:
                dp[i] += dp[i-1] #最后一个数字解密成一个字母
            if i >=2:#下面这种情况至少要有两个字符
                t = int(s[i-2])*10 + int(s[i-1])
                if t>=10 and t<=26:
                    dp[i] += dp[i-2]#最后两个数字解密成一个一个字母
        return dp[-1]
#R 311.66 Burst Balloons/戳气球 (Medium)
# nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
# 定义 f[i][j] 表示戳破区间 [i,j] 内的所有气球能得到的最多硬币数
class Solution:
    def maxCoins(self, nums: List[int]) -> int:
        n = len(nums)
        arr = [1] + nums + [1]
        f = [[0] * (n + 2) for _ in range(n + 2)]
        for i in range(n - 1, -1, -1):
            for j in range(i + 2, n + 2):
                for k in range(i + 1, j):
                    f[i][j] = max(f[i][j], f[i][k] + f[k][j] + arr[i] * arr[k] * arr[j])
        return f[0][-1]
#R 377 Combination Sum IV/组合总和 Ⅳ (Medium) 
# 与39题不同之处顺序不同的序列被视作不同的组合。
class Solution(object):
    def combinationSum4(self, nums, target):
        dp = [0] * (target + 1)
        dp[0] = 1
        res = 0
        for i in range(target + 1):
            for num in nums:
                if i >= num:
                    dp[i] += dp[i - num]
        return dp[target]
#H 0 Arithmetic Slices II - Subsequence/等差数列划分 II - 子序列 (Hard) 
# 所有等差子序列的数目   dp_ik=\sum_j^i-1 (dp_jk+1)  第一维用哈希表提高查询效率、节省空间
class Solution:
    def numberOfArithmeticSlices(self, nums: List[int]) -> int:
        n,ans=len(nums),0
        dp=[defaultdict(int) for _ in range(n)]
        for i,num in enumerate(nums):
            for j in range(i):
                k=num-nums[j]
                dp[i][k]+=dp[j][k]+1
                ans+=dp[j][k]
        return ans
#H 0 Longest Arithmetic Subsequence/最长等差数列 (Medium)
# 以 a[i] 结尾的最长等差子序列公差及其长度存到一个哈希表dp(i)={d:L}
class Solution:
    def longestArithSeqLength(self, a: List[int]) -> int:
        f = [{} for _ in range(len(a))]
        for i, x in enumerate(a):
            for j in range(i - 1, -1, -1):
                d = x - a[j]  # 公差
                if d not in f[i]:
                    f[i][d] = f[j].get(d, 1) + 1
        return max(max(d.values()) for d in f[1:])
#H 873 Length of Longest Fibonacci Subsequence/最长的斐波那契子序列的长度 (Medium)
# 这f[x][y]代表了以数字x和y结尾的最大斐波那契序列长度。f[x][y]=f[yx][x]+1  由于数据范围很大,用哈希表嵌套哈希表实现。
class Solution:
    def lenLongestFibSubseq(self, A: List[int]) -> int:
        
        dp = {}
        res = 0
        tempA = set(A)
        for i in range(1,len(A)):
            for j in range(i):
                diff = A[i]-A[j]
                if diff <A[j] and diff in tempA:
                    dp[(A[j],A[i])] = dp.get((diff,A[j]),2)+1
                    res = max(res,dp[(A[j],A[i])])
        return res
#R 467 Unique Substrings in Wraparound String/环绕字符串中唯一的子字符串 (Medium)  字符串 s = "zab" 有六个子字符串 ("z", "a", "b", "za", "ab", and "zab") 在 base 中
# dp[i] 表示以 s[i] 结尾的最长连续有效子串的长度。
class Solution:
    def findSubstringInWraproundString(self, s: str) -> int:
        if not s:
            return 0
        dp = {}  # 记录以某个字符结尾的最长连续子串长度
        max_len = 0  # 当前连续子串长度
        for i in range(len(s)):
            if i > 0 and (ord(s[i]) - ord(s[i-1]) == 1 or (s[i-1] == 'z' and s[i] == 'a')):
                max_len += 1
            else:
                max_len = 1            
            dp[s[i]] = max(dp.get(s[i], 0), max_len)
        return sum(dp.values())
#R 688 Knight Probability in Chessboard/骑士在棋盘上的概率 (Medium)
# dp[step][i][j]=  1/8  sum_di,dj  dp[step1][i+di][j+dj]
class Solution:
    def knightProbability(self, n: int, k: int, row: int, column: int) -> float:
        dp = [[[0] * n for _ in range(n)] for _ in range(k + 1)]
        for step in range(k + 1):
            for i in range(n):
                for j in range(n):
                    if step == 0:
                        dp[step][i][j] = 1
                    else:
                        for di, dj in ((-2, -1), (-2, 1), (2, -1), (2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2)):
                            ni, nj = i + di, j + dj
                            if 0 <= ni < n and 0 <= nj < n:
                                dp[step][i][j] += dp[step - 1][ni][nj] / 8
        return dp[k][row][column]
#R 877 Stone Game/石子游戏 (Medium)
class Solution:
    def stoneGame(self, piles: List[int]) -> bool:
        N = len(piles)
        f = [[0]*(N+1) for _ in range(N+1)] # 防止出界
        for l in range(N):
            for i in range(N-l):
                j = i+l
                f[i][j] = max(piles[i]-f[i+1][j],
                              piles[j]-f[i][j-1])
        return f[0][N-1]>0
#R 1000 Minimum Cost to Merge Stones/合并石头的最低成本 (Hard)
# 每次移动需要将连续的k堆石头合并为一堆成本为这k堆中石头的总数。
# 定义 f[i][j][k] 表示将 [i,j] 合并成k堆的最小成本  dp[i][j][k] = min(dp[i][m][1] + dp[m+1][j][k-1]) i≤m<j
    def mergeStones(self, stones: List[int], K: int) -> int:
        n = len(stones)
        if (n - 1) % (K-1): return -1
        def get(i, j):
            return sums[j+1] - sums[i]
        dp = [[[float("inf")] * (K+1) for _ in range(n)] for _ in range(n)]
        sums = [0] * (1+n)
        for i in range(1, n+1): sums[i] = sums[i-1] + stones[i-1]
        for i in range(n): dp[i][i][1] = 0
        for l in range(2, n+1):
            for i in range(n - l + 1):
                j = i + l - 1
                for k in range(2, K+1):
                    for m in range(i, j):
                        dp[i][j][k] = min(dp[i][j][k], dp[i][m][1] + dp[m+1][j][k-1])
                dp[i][j][1] = dp[i][j][K] + get(i, j)  #合并成一堆特殊情况不可以从合并成0获得
        return dp[0][n-1][1]
#R 1395 Count Number of Teams/统计作战单位数 (中等)
# 3个士兵组成一个作战单位单调的作战单位的方案数。
# dp[i]记录的是第i个数之前比其值小的数的个数
class Solution:
    def numTeams(self, rating: List[int]) -> int:
        def func(nums):
            dp = [0] * len_
            res = 0
            for i in range(1, len_):
                idx = i - 1
                while idx >= 0:
                    if nums[i] > nums[idx]:
                        dp[i] += 1
                        if dp[idx] > 0:
                            res += dp[idx]
                    idx -= 1
            return res
        len_ = len(rating)
        return func(rating[::-1]) + func(rating)          

其他