coding/coding3.md
2025-06-26 12:46:42 +00:00

82 KiB
Raw Blame History

回溯算法

组合

# 第77题. 组合
# 返回 1 ... n 中所有可能的 k 个数的组合。
class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:
        result = []  # 存放结果集
        self.backtracking(n, k, 1, [], result)
        return result
    def backtracking(self, n, k, startIndex, path, result):
        if len(path) == k:
            result.append(path[:])
            return
        for i in range(startIndex, n - (k - len(path)) + 2):  # 优化的地方,优化前 range(startIndex, n + 1)
            path.append(i)  # 处理节点
            self.backtracking(n, k, i + 1, path, result)
            path.pop()  # 回溯,撤销处理的节点
#R 216.组合总和III
# [1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合
class Solution:
    def combinationSum3(self, k: int, n: int) -> List[List[int]]:
        result = []  # 存放结果集
        self.backtracking(n, k, 0, 1, [], result)
        return result
    def backtracking(self, targetSum, k, currentSum, startIndex, path, result):
        if currentSum > targetSum:  # 剪枝操作
            return  # 如果path的长度等于k但currentSum不等于targetSum则直接返回
        if len(path) == k:
            if currentSum == targetSum:
                result.append(path[:])
            return
        for i in range(startIndex, 9 - (k - len(path)) + 2):  # 剪枝
            currentSum += i  # 处理
            path.append(i)  # 处理
            self.backtracking(targetSum, k, currentSum, i + 1, path, result)  # 注意i+1调整startIndex
            currentSum -= i  # 回溯
            path.pop()  # 回溯
# 0 电话号码的字母组合
class Solution:
    def __init__(self):
        self.letterMap = [
            "",     # 0
            "",     # 1
            "abc",  # 2
            "def",  # 3
            "ghi",  # 4
            "jkl",  # 5
            "mno",  # 6
            "pqrs", # 7
            "tuv",  # 8
            "wxyz"  # 9
        ]
        self.result = []
        self.s = ""
    def backtracking(self, digits, index):
        if index == len(digits):
            self.result.append(self.s)
            return
        digit = int(digits[index])    # 将索引处的数字转换为整数
        letters = self.letterMap[digit]    # 获取对应的字符集
        for i in range(len(letters)):
            self.s += letters[i]    # 处理字符
            self.backtracking(digits, index + 1)    # 递归调用注意索引加1处理下一个数字
            self.s = self.s[:-1]    # 回溯,删除最后添加的字符
    def letterCombinations(self, digits):
        if len(digits) == 0:
            return self.result
        self.backtracking(digits, 0)
        return self.result
# 39. 组合总和
# 无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
# candidates 中的数字可以无限制重复被选取。
class Solution:
    def backtracking(self, candidates, target, total, startIndex, path, result):
        if total > target:
            return
        if total == target:
            result.append(path[:])
            return
        for i in range(startIndex, len(candidates)):
            total += candidates[i]
            path.append(candidates[i])
            self.backtracking(candidates, target, total, i, path, result)  # 不用i+1了表示可以重复读取当前的数
            total -= candidates[i]
            path.pop()
    def combinationSum(self, candidates, target):
        result = []
        self.backtracking(candidates, target, 0, 0, [], result)
        return result
#R 40.组合总和II
# 数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的每个数字在每个组合中只能使用一次。
class Solution:
    def backtracking(self, candidates, target, total, startIndex, used, path, result):
        if total == target:
            result.append(path[:])
            return
        for i in range(startIndex, len(candidates)):
            # 对于相同的数字,只选择第一个未被使用的数字,跳过其他相同数字
            if i > startIndex and candidates[i] == candidates[i - 1] and not used[i - 1]:
                continue
            if total + candidates[i] > target:
                break
            total += candidates[i]
            path.append(candidates[i])
            used[i] = True
            self.backtracking(candidates, target, total, i + 1, used, path, result)
            used[i] = False
            total -= candidates[i]
            path.pop()
    def combinationSum2(self, candidates, target):
        used = [False] * len(candidates)
        result = []
        candidates.sort()
        self.backtracking(candidates, target, 0, 0, used, [], result)
        return result

分割

#R 131.分割回文串
# 将 s 分割成一些子串,使每个子串都是回文串
class Solution:
    def partition(self, s: str) -> List[List[str]]:
        # 递归用于纵向遍历; for循环用于横向遍历; 当切割线迭代至字符串末尾,说明找到一种方法; 类似组合问题为了不重复切割同一位置需要start_index来做标记下一轮递归的起始位置(切割线)
        result = []
        self.backtracking(s, 0, [], result)
        return result
    def backtracking(self, s, start_index, path, result ):
        # Base Case
        if start_index == len(s):
            result.append(path[:])
            return
        # 单层递归逻辑
        for i in range(start_index, len(s)):
            # 此次比其他组合题目多了一步判断:
            # 判断被截取的这一段子串([start_index, i])是否为回文串
            if self.is_palindrome(s, start_index, i):
                path.append(s[start_index:i+1])
                self.backtracking(s, i+1, path, result)   # 递归纵向遍历:从下一处进行切割,判断其余是否仍为回文串
                path.pop()             # 回溯
    def is_palindrome(self, s: str, start: int, end: int) -> bool:
        i: int = start        
        j: int = end
        while i < j:
            if s[i] != s[j]:
                return False
            i += 1
            j -= 1
        return True 
#R 93.复原IP地址
class Solution:
    def restoreIpAddresses(self, s: str) -> List[str]:
        result = []
        self.backtracking(s, 0, 0, "", result)
        return result
    def backtracking(self, s, start_index, point_num, current, result):
        if point_num == 3:  # 逗点数量为3时分隔结束
            if self.is_valid(s, start_index, len(s) - 1):  # 判断第四段子字符串是否合法
                current += s[start_index:]  # 添加最后一段子字符串
                result.append(current)
            return
        for i in range(start_index, len(s)):
            if self.is_valid(s, start_index, i):  # 判断 [start_index, i] 这个区间的子串是否合法
                sub = s[start_index:i + 1]
                self.backtracking(s, i + 1, point_num + 1, current + sub + '.', result)
            else:
                break
    def is_valid(self, s, start, end):
        if start > end:
            return False
        if s[start] == '0' and start != end:  # 0开头的数字不合法
            return False
        num = 0
        for i in range(start, end + 1):
            if not s[i].isdigit():  # 遇到非数字字符不合法
                return False
            num = num * 10 + int(s[i])
            if num > 255:  # 如果大于255了不合法
                return False
        return True

子集

# 0 子集
class Solution:
    def subsets(self, nums):
        result = []
        path = []
        self.backtracking(nums, 0, path, result)
        return result
    def backtracking(self, nums, startIndex, path, result):
        result.append(path[:])  # 收集子集,要放在终止添加的上面,否则会漏掉自己
        # if startIndex >= len(nums):  # 终止条件可以不加
        #     return
        for i in range(startIndex, len(nums)):
            path.append(nums[i])
            self.backtracking(nums, i + 1, path, result)
            path.pop()
#R 90.子集II
# 可能包含重复元素的整数数组 nums返回该数组所有可能的子集幂集。 解集不能包含重复的子集。
class Solution:
    def subsetsWithDup(self, nums):
        result = []
        path = []
        used = [False] * len(nums)
        nums.sort()  # 去重需要排序
        self.backtracking(nums, 0, used, path, result)
        return result
    def backtracking(self, nums, startIndex, used, path, result):
        result.append(path[:])  # 收集子集
        for i in range(startIndex, len(nums)):
            # used[i - 1] == True说明同一树枝 nums[i - 1] 使用过
            # used[i - 1] == False说明同一树层 nums[i - 1] 使用过
            # 而我们要对同一树层使用过的元素进行跳过
            if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]:
                continue
            path.append(nums[i])
            used[i] = True
            self.backtracking(nums, i + 1, used, path, result)
            used[i] = False
            path.pop()
#R 491.递增子序列
# 数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。 利用set去重
class Solution:
    def findSubsequences(self, nums):
        result = []
        path = []
        self.backtracking(nums, 0, path, result)
        return result
    def backtracking(self, nums, startIndex, path, result):
        if len(path) > 1:
            result.append(path[:])  # 注意要使用切片将当前路径的副本加入结果集
            # 注意这里不要加return要取树上的节点
        
        uset = set()  # 使用集合对本层元素进行去重
        for i in range(startIndex, len(nums)):
            if (path and nums[i] < path[-1]) or nums[i] in uset:
                continue
            
            uset.add(nums[i])  # 记录这个元素在本层用过了,本层后面不能再用了
            path.append(nums[i])
            self.backtracking(nums, i + 1, path, result)
            path.pop()

排列

# 46.全排列
class Solution:
    def permute(self, nums):
        result = []
        self.backtracking(nums, [], [False] * len(nums), result)
        return result
    def backtracking(self, nums, path, used, result):
        if len(path) == len(nums):
            result.append(path[:])
            return
        for i in range(len(nums)):
            if used[i]:
                continue
            used[i] = True
            path.append(nums[i])
            self.backtracking(nums, path, used, result)
            path.pop()
            used[i] = False
#R 47.全排列 II
# 可包含重复数字的序列 ,返回所有不重复的全排列
class Solution:
    def permuteUnique(self, nums):
        nums.sort()  # 排序
        result = []
        self.backtracking(nums, [], [False] * len(nums), result)
        return result
    def backtracking(self, nums, path, used, result):
        if len(path) == len(nums):
            result.append(path[:])
            return
        for i in range(len(nums)):
            if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]:
                continue
            used[i] = True
            path.append(nums[i])
            self.backtracking(nums, path, used, result)
            path.pop()
            used[i] = False

棋盘

#R 51. N皇后
class Solution:
    def solveNQueens(self, n: int) -> List[List[str]]:
        result = []  # 存储最终结果的二维字符串数组
        chessboard = ['.' * n for _ in range(n)]  # 初始化棋盘
        self.backtracking(n, 0, chessboard, result)  # 回溯求解
        return [[''.join(row) for row in solution] for solution in result]  # 返回结果集
    def backtracking(self, n: int, row: int, chessboard: List[str], result: List[List[str]]) -> None:
        if row == n:
            result.append(chessboard[:])  # 棋盘填满,将当前解加入结果集
            return
        for col in range(n):
            if self.isValid(row, col, chessboard):
                chessboard[row] = chessboard[row][:col] + 'Q' + chessboard[row][col+1:]  # 放置皇后
                self.backtracking(n, row + 1, chessboard, result)  # 递归到下一行
                chessboard[row] = chessboard[row][:col] + '.' + chessboard[row][col+1:]  # 回溯,撤销当前位置的皇后
    def isValid(self, row: int, col: int, chessboard: List[str]) -> bool:
        # 检查列
        for i in range(row):
            if chessboard[i][col] == 'Q':
                return False  # 当前列已经存在皇后,不合法
        # 检查 45 度角是否有皇后
        i, j = row - 1, col - 1
        while i >= 0 and j >= 0:
            if chessboard[i][j] == 'Q':
                return False  # 左上方向已经存在皇后,不合法
            i -= 1
            j -= 1
        # 检查 135 度角是否有皇后
        i, j = row - 1, col + 1
        while i >= 0 and j < len(chessboard):
            if chessboard[i][j] == 'Q':
                return False  # 右上方向已经存在皇后,不合法
            i -= 1
            j += 1
        return True  # 当前位置合法
#R 37. 解数独
class Solution:
    def solveSudoku(self, board: List[List[str]]) -> None:
        """
        Do not return anything, modify board in-place instead.
        """
        self.backtracking(board)
    def backtracking(self, board: List[List[str]]) -> bool:
        # 若有解返回True若无解返回False
        for i in range(len(board)): # 遍历行
            for j in range(len(board[0])):  # 遍历列
                # 若空格内已有数字,跳过
                if board[i][j] != '.': continue
                for k in range(1, 10):
                    if self.is_valid(i, j, k, board):
                        board[i][j] = str(k)
                        if self.backtracking(board): return True
                        board[i][j] = '.'
                # 若数字1-9都不能成功填入空格返回False无解
                return False
        return True # 有解
    def is_valid(self, row: int, col: int, val: int, board: List[List[str]]) -> bool:
        # 判断同一行是否冲突
        for i in range(9):
            if board[row][i] == str(val):
                return False
        # 判断同一列是否冲突
        for j in range(9):
            if board[j][col] == str(val):
                return False
        # 判断同一九宫格是否有冲突
        start_row = (row // 3) * 3
        start_col = (col // 3) * 3
        for i in range(start_row, start_row + 3):
            for j in range(start_col, start_col + 3):
                if board[i][j] == str(val):
                    return False
        return True

其他

#R 282 Expression Add Operators/给表达式添加运算符 (Hard)
# 输入: num = "123", target = 6 输出: ["1+2+3", "1*2*3"] 
# 每个字符与字符实际上有四种连接方式,加减乘和拼接
class Solution:
    def addOperators(self, num: str, target: int) -> List[str]:
        def backtrace(idx: int, cursum: int, preadd: int) -> None:
            nonlocal res
            nonlocal path
            if idx == n:
                if cursum == target:
                    res.append(path[:])
                return    
            pn = len(path)
            for i in range(idx, n):
                x_str = num[idx: i + 1]
                x = int(x_str)              
                if idx == 0:
                    path += x_str
                    backtrace(i + 1, cursum + x, x)
                    path = path[ :pn]
                else:
                    path += '+' + x_str
                    backtrace(i + 1, cursum + x, x)
                    path = path[ :pn]
                    path += '-' + x_str
                    backtrace(i + 1, cursum - x, -x)
                    path = path[ :pn]
                    path += '*' + x_str
                    backtrace(i + 1, cursum - preadd + preadd * x, preadd * x)
                    path = path[ :pn]
                if x == 0:
                    return
        n = len(num)
        res = []
        path = ""
        backtrace(0, 0, 0)
        return res
#R 698 Partition to K Equal Sum Subsets/划分为k个相等的子集 (Medium)
class Solution:
    def canPartitionKSubsets(self, nums: List[int], k: int) -> bool:
        def dfs(i):
            if i == len(nums):
                return True
            for j in range(k):
                if j and cur[j] == cur[j - 1]:
                    continue
                cur[j] += nums[i]
                if cur[j] <= s and dfs(i + 1):
                    return True
                cur[j] -= nums[i]
            return False
        s, mod = divmod(sum(nums), k)
        if mod:
            return False
        cur = [0] * k
        nums.sort(reverse=True)
        return dfs(0)

图Visited

# 连通图归类
def fun(fd):
    visited = set()
    res = []
    def helper(p, group):
        if p in visited:
            return
        visited.add(p)
        group.append(p)
        for f in fd[p]:
            if f not in visited:
                helper(f, group)
    for key in fd:
        if key not in visited:
            group = []
            helper(key, group)
            res.append(group)
    return res
# 构造一个图,返回结果:[[1, 2], [3]]
graph = {
    1: [2],
    2: [1],
    3: [ ]
}
# 计算某节点所在的连通分量的成员个数
from typing import List, Dict, Set
def helper(friend_map: Dict[int, List[int]], p: int, visited: Set[int]) -> int:
    # helper在求p所在类的成员个数
    if p in visited:
        return 0
    visited.add(p)
    res = 1
    for f in friend_map[p]:
        if f not in visited:
            res += helper(friend_map, f, visited)
    return res
visited_set = set()
result = helper(graph, 1, visited_set)
# 返回类的个数0. Number of Provinces/省份数量)(Medium)
from typing import List
def findCircleNum(graph: List[List[int]]) -> int:
    def dfs(node):
        visited.add(node)
        for neighbor, isConnected in enumerate(graph[node]):
            if isConnected and neighbor not in visited:
                dfs(neighbor)
    n = len(graph)
    provinces = 0
    visited = set()
    for city in range(n):
        if city not in visited:
            provinces += 1
            dfs(city)
    return provinces
# 示例
graph = [
    [1, 1, 0],
    [1, 1, 0],
    [0, 0, 1]
]
#R Most Stones Removed with Same Row or Column/移除最多的同行或同列石头(Medium)
# 石头放在整数坐标点上, move操作移除某一块石头共享一列或一行的一块石头,最多能执行多少次 move
class Solution:
    def removeStones(self, stones: List[List[int]]) -> int:
        # 构建图
        graph = collections.defaultdict(list)
        for i, (x, y) in enumerate(stones):
            for j, (xx, yy) in enumerate(stones):
                if x == xx or y == yy:
                    graph[i].append(j)
        # DFS计算连通分量数量
        def dfs(node):
            visited.add(node)
            for neighbor in graph[node]:
                if neighbor not in visited:
                    dfs(neighbor)
        n = len(stones)
        visited = set()
        components = 0
        for i in range(n):
            if i not in visited:
                components += 1
                dfs(i)
        return n - components
# n个点最少移动几根能使所有点都连通当且仅当线的个数>=n-1. 最少移动的数就是连通分支个数-1 (1319. Number of Operations to Make Network Connected)
class Solution:
    def makeConnected(self, n: int, connections: List[List[int]]) -> int:
        if len(connections) < n - 1:
            return -1
        edges = collections.defaultdict(list)
        for x, y in connections:
            edges[x].append(y)
            edges[y].append(x)    
        seen = set()
        def dfs(u: int):
            seen.add(u)
            for v in edges[u]:
                if v not in seen:
                    dfs(v)
        ans = 0
        for i in range(n):
            if i not in seen:
                dfs(i)
                ans += 1  
        return ans - 1
#无向图环路检测可以使用深度优先搜索DFS来检测是否存在环路。一般的思路是从一个节点开始进行深度优先搜索如果在搜索的过程中访问到了已经访问过的节点那么就说明存在环。
#? Bellman-Ford无向图环路检测良序
#R 200. Number of Islands 给定一个由 '1'(陆地)和 '0'(水)组成的二维网格,计算岛屿的数量。岛屿是由相邻的陆地水平或垂直连接形成的(不包括对角线)。你可以假设网格的四个边都被水包围。
class Solution:
    def numIslands(self, grid: List[List[str]]) -> int:
        if not grid or not grid[0]:
            return 0
        rows, cols = len(grid), len(grid[0])
        islands = 0
        def dfs(row, col):
            if 0 <= row < rows and 0 <= col < cols and grid[row][col] == '1':
                grid[row][col] = '0'  # 标记为已访问
                # 递归搜索相邻的陆地
                dfs(row - 1, col)
                dfs(row + 1, col)
                dfs(row, col - 1)
                dfs(row, col + 1)
        for row in range(rows):
            for col in range(cols):
                if grid[row][col] == '1':
                    islands += 1
                    dfs(row, col)
        return islands
#类似的题目  Search treasury
# 皮卡公式如果只有一个dect告诉你点在内部=1边界=0外部=-1求多边形面积从一个内部点开始探测出内部点i和边界点b个数用皮卡公式i + b/2.0  1
def help(pt, visited, i, b):
    # 为了在递归调用中保持对 i 和 b 的引用,将它们封装为长度为 1 的列表([i] 和 [b]),通过修改列表的值实现引用传递的效果。
    def dect(p):
        # 实现 dext 函数的逻辑
        # 注意:这里的 dext 函数需要根据实际情况替换为你的具体实现
        pass
    if dect(pt) == -1 or tuple(pt) in visited:
        return
    visited.add(tuple(pt))
    if dect(pt) == 1:
        i[0] += 1
    if dect(pt) == 0:
        b[0] += 1
    help([pt[0] + 1, pt[1]], visited, i, b)
    help([pt[0] - 1, pt[1]], visited, i, b)
    help([pt[0], pt[1] + 1], visited, i, b)
    help([pt[0], pt[1] - 1], visited, i, b)
# 797 回溯, 所有可能的路径有向无环图DAG请你找出所有从节点 0 到节点 n-1 的路径
class Solution:
    def __init__(self):
        self.result = []
        self.path = [0]
    def allPathsSourceTarget(self, graph: List[List[int]]) -> List[List[int]]:
        if not graph: return []
        self.dfs(graph, 0)
        return self.result
    def dfs(self, graph, root: int):
        if root == len(graph) - 1:  # 成功找到一条路径时
            # ***Python的list是mutable类型***
            # ***回溯中必须使用Deep Copy***
            self.result.append(self.path[:]) 
            return
        for node in graph[root]:   # 遍历节点n的所有后序节点
            self.path.append(node)
            self.dfs(graph, node)
            self.path.pop() # 回溯
#R (hard) 单词接龙,从单词 beginWord 和 endWord 的转换序列每次转换只能改变一个字母wordList = ["hot","dot","dog"]
class Solution:
    def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int:
        wordSet = set(wordList)
        if len(wordSet)== 0 or endWord not in wordSet:
            return 0
        mapping = {beginWord:1}
        queue = deque([beginWord]) 
        while queue:
            word = queue.popleft()
            path = mapping[word]
            for i in range(len(word)):
                word_list = list(word)
                for j in range(26):
                    word_list[i] = chr(ord('a')+j)
                    newWord = "".join(word_list)
                    if newWord == endWord:
                        return path+1
                    if newWord in wordSet and newWord not in mapping:
                        mapping[newWord] = path+1
                        queue.append(newWord)                      
        return 0
#R 463. 岛屿的周长
class Solution:
    def islandPerimeter(self, grid: List[List[int]]) -> int:
        m = len(grid)
        n = len(grid[0])
        # 创建res二维素组记录答案
        res = [[0] * n for j in range(m)]
        for i in range(m):
            for j in range(len(grid[i])):
                # 如果当前位置为水域不做修改或reset res[i][j] = 0
                if grid[i][j] == 0:
                    res[i][j] = 0
                # 如果当前位置为陆地往四个方向判断update res[i][j]
                elif grid[i][j] == 1:
                    if i == 0 or (i > 0 and grid[i-1][j] == 0):
                        res[i][j] += 1
                    if j == 0 or (j >0 and grid[i][j-1] == 0):
                        res[i][j] += 1
                    if i == m-1 or (i < m-1 and grid[i+1][j] == 0):
                        res[i][j] += 1
                    if j == n-1 or (j < n-1 and grid[i][j+1] == 0):
                        res[i][j] += 1
        # 最后求和res矩阵这里其实不一定需要矩阵记录可以设置一个variable res 记录边长,舍矩阵无非是更加形象而已
        ans = sum([sum(row) for row in res])
        return ans
# 1066. Campus Bikes II
# visited技巧题目非图论 workers, bikes代表工人和自行车的坐标。找到工人各自的自行车使得L1距离总和最近。 res[i] = work[i]对应的bikes, work和bike都没有访问过才更新res
def assignBikes(workers, bikes):
    def dist(a, b):
        return abs(a[0] - b[0]) + abs(a[1] - b[1])
    dict_list = []
    for i in range(len(workers)):
        for j in range(len(bikes)):
            dict_list.append([dist(workers[i], bikes[j]), i, j])
    dict_list.sort(key=lambda x: x[0])
    res = [-1] * len(workers)
    visited = set()
    for it in dict_list:
        if res[it[1]] == -1 and it[2] not in visited:
            res[it[1]] = it[2]
            visited.add(it[2])
    return res
#R 1091. Shortest Path in Binary Matrix/二进制矩阵中的最短路径(Medium)
class Solution:
    def shortestPathBinaryMatrix(self, grid: List[List[int]]) -> int:
        if grid[0][0]:
            return -1
        n = len(grid)
        grid[0][0] = 1
        q = deque([(0, 0)])
        ans = 1
        while q:
            for _ in range(len(q)):
                i, j = q.popleft()
                if i == j == n - 1:
                    return ans
                for x in range(i - 1, i + 2):
                    for y in range(j - 1, j + 2):
                        if 0 <= x < n and 0 <= y < n and grid[x][y] == 0:
                            grid[x][y] = 1
                            q.append((x, y))
            ans += 1
        return -1
# 0 Course Schedule.  prerequisites[i] = [a, b] 表示如果要学习课程 a 则必须先学习课程 b。判断是否可能完成所有课程学习。
统计课程安排图中每个节点的入度生成 入度表 indegrees
借助一个队列 queue将所有入度为 0 的节点入队
 queue 非空时依次将队首节点出队在课程安排图中删除此节点 pre
在每次 pre 出队时执行 numCourses--
class Solution:
    def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
        indegrees = [0 for _ in range(numCourses)]
        adjacency = [[] for _ in range(numCourses)]
        queue = deque()
        # Get the indegree and adjacency of every course.
        for cur, pre in prerequisites:
            indegrees[cur] += 1
            adjacency[pre].append(cur)
        # Get all the courses with the indegree of 0.
        for i in range(len(indegrees)):
            if not indegrees[i]: queue.append(i)
        # BFS TopSort.
        while queue:
            pre = queue.popleft()
            numCourses -= 1
            for cur in adjacency[pre]:
                indegrees[cur] -= 1
                if not indegrees[cur]: queue.append(cur)
        return not numCourses
#R 210 Course Schedule II/课程表 II (Medium)
# 返回你为了学完所有课程所安排的学习顺序indeg 存储每个节点的入度
class Solution:
    def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
        g = defaultdict(list)
        indeg = [0] * numCourses
        for a, b in prerequisites:
            g[b].append(a)
            indeg[a] += 1
        ans = []
        q = deque(i for i, x in enumerate(indeg) if x == 0)
        while q:
            i = q.popleft()
            ans.append(i)
            for j in g[i]:
                indeg[j] -= 1
                if indeg[j] == 0:
                    q.append(j)
        return ans if len(ans) == numCourses else []
#R 329 Longest Increasing Path in a Matrix/矩阵中的最长递增路径 (Medium)
class Solution:
    def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
        m, n = len(matrix), len(matrix[0])
        flag = [[-1] * n for _ in range(m)] #存储从ij出发的最长递归路径

        def dfs(i, j):
            if flag[i][j] != -1: # 记忆化搜索,避免重复的计算
                return flag[i][j]
            else:
                d = 1
                for (x, y) in [[-1, 0], [1, 0], [0, 1], [0, -1]]:
                    x, y = i + x, j + y
                    if 0 <= x < m and 0 <= y < n and matrix[x][y] > matrix[i][j]:
                        d = max(d, dfs(x, y) + 1) # 取四个邻接点的最长
                flag[i][j] = d
                return d

        res = 0
        for i in range(m): # 遍历矩阵计算最长路径
            for j in range(n):
                if flag[i][j] == -1:
                    res = max(res, dfs(i, j))
        return res
#R 743 Network Delay Time/网络延迟时间 (Medium)
# 从某个节点 K 发出一个信号。需要多久才能使所有节点都收到信号 Dijkstra 算法
class Solution:
    def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int:
        g = [[float('inf')] * n for _ in range(n)]
        for x, y, time in times:
            g[x - 1][y - 1] = time
        dist = [float('inf')] * n
        dist[k - 1] = 0
        used = [False] * n
        for _ in range(n):
            x = -1
            for y, u in enumerate(used):
                if not u and (x == -1 or dist[y] < dist[x]):
                    x = y
            used[x] = True
            for y, time in enumerate(g[x]):
                dist[y] = min(dist[y], dist[x] + time)
        ans = max(dist)
        return ans if ans < float('inf') else -1
# 752 Open the Lock/打开转盘锁 (Medium)
from queue import Queue
class Solution:
    def openLock(self, deadends: List[str], target: str) -> int:
        deadends = set(deadends) # in 操作在set中时间复杂度为O(1)
        if '0000' in deadends:
            return -1
        # ----------------BFS 开始------------------
        q = Queue()
        q.put(('0000', 0)) # 初始化根节点 (当前节点值,转动步数)        
        while not q.empty():           
            node, step = q.get()          
            for i in range(4):
                for add in (1, -1):
                    cur = node[:i] + str((int(node[i]) + add) % 10) + node[i+1:]
                    if cur == target:
                        return step + 1
                    if not cur in deadends:
                        q.put((cur, step + 1))
                        deadends.add(cur) # 避免重复搜索
        return -1
#R 827 Making A Large Island/最大人工岛 (Hard)
# 最多 只能将一格 0 变成 1 
class Solution:
    def largestIsland(self, grid: List[List[int]]) -> int:
        n = len(grid)
        def dfs(i: int, j: int) -> int:
            size = 1
            grid[i][j] = len(area) + 2  # 记录 (i,j) 属于哪个岛
            for x, y in (i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1):
                if 0 <= x < n and 0 <= y < n and grid[x][y] == 1:
                    size += dfs(x, y)
            return size
        # DFS 每个岛,统计各个岛的面积,记录到 area 列表中
        area = []
        for i, row in enumerate(grid):
            for j, x in enumerate(row):
                if x == 1:
                    area.append(dfs(i, j))
        # 加上这个特判,可以快很多
        if not area:  # 没有岛
            return 1
        ans = 0
        for i, row in enumerate(grid):
            for j, x in enumerate(row):
                if x: continue
                s = set()
                for x, y in (i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1):
                    if 0 <= x < n and 0 <= y < n and grid[x][y]:
                        s.add(grid[x][y])  # 记录上下左右格子所属岛屿编号
                ans = max(ans, sum(area[idx - 2] for idx in s) + 1)  # 累加面积
        return ans if ans else n * n   # 如果最后 ans 仍然为 0说明所有格子都是 1返回 n^2
#R 0 Get Watched Videos by Your Friends/获取你好友已观看的视频 (Medium)
# watchedVideos[i]  和 friends[i] 分别表示 id = i 的人观看过的视频列表和他的好友列表。找出所有指定 level 的视频
class Solution:
    def watchedVideosByFriends(self, watchedVideos, friends, id, level):
        n = len(friends)
        used = [False] * n
        q = collections.deque([id])
        used[id] = True
        for _ in range(level):
            span = len(q)
            for i in range(span):
                u = q.popleft()
                for v in friends[u]:
                    if not used[v]:
                        q.append(v)
                        used[v] = True
        freq = collections.Counter()
        for _ in range(len(q)):
            u = q.pop()
            for watched in watchedVideos[u]:
                freq[watched] += 1
        videos = list(freq.items())
        videos.sort(key=lambda x: (x[1], x[0]))
        ans = [video[0] for video in videos]
        return ans
#R 1761 Minimum Degree of a Connected Trio in a Graph/一个图中连通三元组的最小度数 (困难)  
# 连通三元组的度数 是所有满足此条件的边的数目:一个顶点在这个三元组内,而另一个顶点不在这个三元组内。返回所有连通三元组中度数的 最小值
class Solution:
    def minTrioDegree(self, n: int, edges: List[List[int]]) -> int:
        g = [[False] * n for _ in range(n)]
        deg = [0] * n
        for u, v in edges:
            u, v = u - 1, v - 1
            g[u][v] = g[v][u] = True
            deg[u] += 1
            deg[v] += 1
        ans = inf
        for i in range(n):
            for j in range(i + 1, n):
                if g[i][j]:
                    for k in range(j + 1, n):
                        if g[i][k] and g[j][k]:
                            ans = min(ans, deg[i] + deg[j] + deg[k] - 6)
        return -1 if ans == inf else ans

动态规划

简单

# 1.   斐波那契数
class Solution:
    def fib(self, n: int) -> int:
        # 排除 Corner Case
        if n == 0:
            return 0
        # 创建 dp table 
        dp = [0] * (n + 1)
        # 初始化 dp 数组
        dp[0] = 0
        dp[1] = 1
        # 遍历顺序: 由前向后。因为后面要用到前面的状态
        for i in range(2, n + 1):
            # 确定递归公式/状态转移公式
            dp[i] = dp[i - 1] + dp[i - 2]
        # 返回答案
        return dp[n]
# 1.  爬楼梯
# 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶
# 空间复杂度为O(n)版本
class Solution:
    def climbStairs(self, n: int) -> int:
        if n <= 1:
            return n
        dp = [0] * (n + 1)
        dp[1] = 1
        dp[2] = 2
        for i in range(3, n + 1):
            dp[i] = dp[i - 1] + dp[i - 2]
        return dp[n]
# 1.   使用最小花费爬楼梯
class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        dp = [0] * (len(cost) + 1)
        dp[0] = 0  # 初始值,表示从起点开始不需要花费体力
        dp[1] = 0  # 初始值,表示经过第一步不需要花费体力       
        for i in range(2, len(cost) + 1):
            # 在第i步可以选择从前一步i-1花费体力到达当前步或者从前两步i-2花费体力到达当前步
            # 选择其中花费体力较小的路径加上当前步的花费更新dp数组
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])       
        return dp[len(cost)]  # 返回到达楼顶的最小花费
# 62.不同路径
# 一个机器人位于一个 m x n 网格的左上角,机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角。总共有多少条不同的路径
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        # 创建一个二维列表用于存储唯一路径数
        dp = [[0] * n for _ in range(m)]
        # 设置第一行和第一列的基本情况
        for i in range(m):
            dp[i][0] = 1
        for j in range(n):
            dp[0][j] = 1
        # 计算每个单元格的唯一路径数
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
        # 返回右下角单元格的唯一路径数
        return dp[m - 1][n - 1]
0. 子矩阵和一般用动态规划dp 行列各加一行0方便计算
# 1.  不同路径 II 网格中有障碍物
class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid):
        m = len(obstacleGrid)
        n = len(obstacleGrid[0])
        if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
            return 0
        dp = [[0] * n for _ in range(m)]
        for i in range(m):
            if obstacleGrid[i][0] == 0:  # 遇到障碍物时直接退出循环后面默认都是0
                dp[i][0] = 1
            else:
                break
        for j in range(n):
            if obstacleGrid[0][j] == 0:
                dp[0][j] = 1
            else:
                break
        for i in range(1, m):
            for j in range(1, n):
                if obstacleGrid[i][j] == 1:
                    continue
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
        return dp[m - 1][n - 1]
# 96.不同的二叉搜索树
class Solution:
    def numTrees(self, n: int) -> int:
        dp = [0] * (n + 1)  # 创建一个长度为n+1的数组初始化为0
        dp[0] = 1  # 当n为0时只有一种情况即空树所以dp[0] = 1
        for i in range(1, n + 1):  # 遍历从1到n的每个数字
            for j in range(1, i + 1):  # 对于每个数字i计算以i为根节点的二叉搜索树的数量
                dp[i] += dp[j - 1] * dp[i - j]  # 利用动态规划的思想,累加左子树和右子树的组合数量
        return dp[n]  # 返回以1到n为节点的二叉搜索树的总数量
# 139.单词拆分
# s 是否可以被空格拆分为一个或多个在字典中出现的单词
class Solution:
    def wordBreak(self, s: str, wordDict: List[str]) -> bool:
        wordSet = set(wordDict)
        n = len(s)
        dp = [False] * (n + 1)  # dp[i] 表示字符串的前 i 个字符是否可以被拆分成单词
        dp[0] = True  # 初始状态,空字符串可以被拆分成单词

        for i in range(1, n + 1): # 遍历背包
            for j in range(i): # 遍历单词
                if dp[j] and s[j:i] in wordSet:
                    dp[i] = True  # 如果 s[0:j] 可以被拆分成单词,并且 s[j:i] 在单词集合中存在,则 s[0:i] 可以被拆分成单词
                    break

        return dp[n]

背包问题

#R 背包问题
def test_2_ei_bag_problem1(weight, value, bagweight):
    # 二维数组
    dp = [[0] * (bagweight + 1) for _ in range(len(weight))]
    # 初始化
    for j in range(weight[0], bagweight + 1):
        dp[0][j] = value[0]
    # weight数组的大小就是物品个数
    for i in range(1, len(weight)):  # 遍历物品
        for j in range(bagweight + 1):  # 遍历背包容量
            if j < weight[i]:
                dp[i][j] = dp[i - 1][j]
            else:
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])
    return dp[len(weight) - 1][bagweight]
# 0 分割等和子集
# 将这个数组分割成两个子集,使得两个子集的元素和相等
class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        total_sum = sum(nums)
        if total_sum % 2 != 0:
            return False
        target_sum = total_sum // 2
        dp = [[False] * (target_sum + 1) for _ in range(len(nums) + 1)]
        # 初始化第一行空子集可以得到和为0
        for i in range(len(nums) + 1):
            dp[i][0] = True
        for i in range(1, len(nums) + 1):
            for j in range(1, target_sum + 1):
                if j < nums[i - 1]:
                    # 当前数字大于目标和时,无法使用该数字
                    dp[i][j] = dp[i - 1][j]
                else:
                    # 当前数字小于等于目标和时,可以选择使用或不使用该数字
                    dp[i][j] = dp[i - 1][j] or dp[i - 1][j - nums[i - 1]]
        return dp[len(nums)][target_sum]
# 494.目标和
# 有两个符号 + 和 - 使最终数组和为目标数 S 的所有添加符号的方法数
class Solution:
    def findTargetSumWays(self, nums: List[int], target: int) -> int:
        total_sum = sum(nums)  # 计算nums的总和
        if abs(target) > total_sum:
            return 0  # 此时没有方案
        if (target + total_sum) % 2 == 1:
            return 0  # 此时没有方案
        target_sum = (target + total_sum) // 2  # 目标和
        # 创建二维动态规划数组,行表示选取的元素数量,列表示累加和
        dp = [[0] * (target_sum + 1) for _ in range(len(nums) + 1)]
        # 初始化状态
        dp[0][0] = 1
        # 动态规划过程
        for i in range(1, len(nums) + 1):
            for j in range(target_sum + 1):
                dp[i][j] = dp[i - 1][j]  # 不选取当前元素
                if j >= nums[i - 1]:
                    dp[i][j] += dp[i - 1][j - nums[i - 1]]  # 选取当前元素
        return dp[len(nums)][target_sum]  # 返回达到目标和的方案数
# 474.一和零
# 找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 
# dp[i][j]最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。
# 518.零钱兑换II
# 函数来计算可以凑成总金额的硬币组合数
# 爬楼梯进阶版每次你可以爬至多m (1 <= m < n)个台阶。
#R 零钱兑换 计算可以凑成总金额所需的最少的硬币个数。
class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        n = len(coins)
        dp = [[amount+1] * (amount+1) for _ in range(n+1)]    # 初始化为一个较大的值,如 +inf 或 amount+1
        # 合法的初始化
        dp[0][0] = 0    # 其他 dp[0][j]均不合法
        # 完全背包:优化后的状态转移
        for i in range(1, n+1):             # 第一层循环:遍历硬币
            for j in range(amount+1):       # 第二层循环:遍历背包
                if j < coins[i-1]:          # 容量有限无法选择第i种硬币
                    dp[i][j] = dp[i-1][j]
                else:                       # 可选择第i种硬币
                    dp[i][j] = min( dp[i-1][j], dp[i][j-coins[i-1]] + 1 )
        ans = dp[n][amount] 
        return ans if ans != amount+1 else -1
# 279.完全平方数
# 若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
class Solution:
    def numSquares(self, n: int) -> int:
        # 预处理出 <=sqrt(n) 的完全平方数
        nums = []
        i = 1
        while i*i <= n:
            nums.append(i*i)
            i += 1
        # 转化为完全背包问题【套用「322. 零钱兑换」】
        target = n
        length = len(nums)
        dp = [[target+1] * (target+1) for _ in range(length+1)]    # 初始化为一个较大的值,如 +inf 或 target+1
        dp[0][0] = 0    # 合法的初始化;其他 dp[0][j]均不合法
        # 完全背包:优化后的状态转移
        for i in range(1, length+1):             # 第一层循环遍历nums
            for j in range(target+1):       # 第二层循环:遍历背包
                if j < nums[i-1]:           # 容量有限无法选择第i个数字
                    dp[i][j] = dp[i-1][j]
                else:                       # 可选择第i个数字
                    dp[i][j] = min( dp[i-1][j], dp[i][j-nums[i-1]] + 1 )
        return dp[length][target] 

股票系列

#R 1.   买卖股票的最佳时机
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        length = len(prices)
        if len == 0:
            return 0
        dp = [[0] * 2 for _ in range(length)]
        dp[0][0] = -prices[0]
        dp[0][1] = 0
        for i in range(1, length):
            dp[i][0] = max(dp[i-1][0], -prices[i])
            dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0])
        return dp[-1][1]
#R 122.买卖股票的最佳时机II
# 可以尽可能地完成更多的交易,不能同时参与多笔交易
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        length = len(prices)
        dp = [[0] * 2 for _ in range(length)]
        dp[0][0] = -prices[0]
        dp[0][1] = 0
        for i in range(1, length):
            dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]) #注意这里是和121. 买卖股票的最佳时机唯一不同的地方
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])
        return dp[-1][1]
#R 0 买卖股票的最佳时机含手续费
class Solution:
    def maxProfit(self, prices: List[int], fee: int) -> int:
        n = len(prices)
        dp = [[0] * 2 for _ in range(n)]
        dp[0][0] = -prices[0] #持股票
        for i in range(1, n):
            dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee)
        return max(dp[-1][0], dp[-1][1])
#R 123.买卖股票的最佳时机III 最多可以完成 两笔 交易。
# 0 没有操作 (其实我们也可以不设置这个状态); 1 第一次持有股票; 2 第一次不持有股票
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if len(prices) == 0:
            return 0
        dp = [[0] * 5 for _ in range(len(prices))]
        dp[0][1] = -prices[0]
        dp[0][3] = -prices[0]
        for i in range(1, len(prices)):
            dp[i][0] = dp[i-1][0]
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
            dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i])
            dp[i][3] = max(dp[i-1][3], dp[i-1][2] - prices[i])
            dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i])
        return dp[-1][4]
#R 188.买卖股票的最佳时机IV
最多可以完成 k 笔交易
class Solution:
    def maxProfit(self, k: int, prices: List[int]) -> int:
        if len(prices) == 0:
            return 0
        dp = [[0] * (2*k+1) for _ in range(len(prices))]
        for j in range(1, 2*k, 2):
            dp[0][j] = -prices[0]
        for i in range(1, len(prices)):
            for j in range(0, 2*k-1, 2):
                dp[i][j+1] = max(dp[i-1][j+1], dp[i-1][j] - prices[i])
                dp[i][j+2] = max(dp[i-1][j+2], dp[i-1][j+1] + prices[i])
        return dp[-1][2*k]
#R 1.   股票最佳买卖股票时机含冷冻期
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if not prices:
            return 0
        n = len(prices)
        # f[i][0]: 手上持有股票的最大收益
        # f[i][1]: 手上不持有股票,并且处于冷冻期中的累计最大收益
        # f[i][2]: 手上不持有股票,并且不在冷冻期中的累计最大收益
        f = [[-prices[0], 0, 0]] + [[0] * 3 for _ in range(n - 1)]
        for i in range(1, n):
            f[i][0] = max(f[i - 1][0], f[i - 1][2] - prices[i])
            f[i][1] = f[i - 1][0] + prices[i]
            f[i][2] = max(f[i - 1][1], f[i - 1][2])
        return max(f[n - 1][1], f[n - 1][2])

子序列系列

# 300.最长递增子序列
# 找到其中最长严格递增子序列的长度
class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        if len(nums) <= 1:
            return len(nums)
        dp = [1] * len(nums)
        result = 1
        for i in range(1, len(nums)):
            for j in range(0, i):
                if nums[i] > nums[j]:
                    dp[i] = max(dp[i], dp[j] + 1)
            result = max(result, dp[i]) #取长的子序列
        return result
# 1.   最长连续递增序列
class Solution:
    def findLengthOfLCIS(self, nums: List[int]) -> int:
        if len(nums) == 0:
            return 0
        result = 1
        dp = [1] * len(nums)
        for i in range(len(nums)-1):
            if nums[i+1] > nums[i]: #连续记录
                dp[i+1] = dp[i] + 1
            result = max(result, dp[i+1])
        return result
# 1.   最长重复子数组
# 数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度==连续子序列
class Solution:
    def findLength(self, nums1: List[int], nums2: List[int]) -> int:
        # 创建一个二维数组 dp用于存储最长公共子数组的长度
        dp = [[0] * (len(nums2) + 1) for _ in range(len(nums1) + 1)]
        # 记录最长公共子数组的长度
        result = 0
        # 遍历数组 nums1
        for i in range(1, len(nums1) + 1):
            # 遍历数组 nums2
            for j in range(1, len(nums2) + 1):
                # 如果 nums1[i-1] 和 nums2[j-1] 相等
                if nums1[i - 1] == nums2[j - 1]:
                    # 在当前位置上的最长公共子数组长度为前一个位置上的长度加一
                    dp[i][j] = dp[i - 1][j - 1] + 1
                # 更新最长公共子数组的长度
                if dp[i][j] > result:
                    result = dp[i][j]
        # 返回最长公共子数组的长度
        return result
# 1143.最长公共子序列
# 两个字符串的最长公共子序列的长度
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        # 创建一个二维数组 dp用于存储最长公共子序列的长度
        dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)]
        # 遍历 text1 和 text2填充 dp 数组
        for i in range(1, len(text1) + 1):
            for j in range(1, len(text2) + 1):
                if text1[i - 1] == text2[j - 1]:
                    # 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    # 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        # 返回最长公共子序列的长度
        return dp[len(text1)][len(text2)]
# 1035.不相交的线
# 连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且我们绘制的直线不与任何其他连线(非水平线)相交。
class Solution:
    def maxUncrossedLines(self, A: List[int], B: List[int]) -> int:
        dp = [[0] * (len(B)+1) for _ in range(len(A)+1)]
        for i in range(1, len(A)+1):
            for j in range(1, len(B)+1):
                if A[i-1] == B[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        return dp[-1][-1]
# 1.  最大子序和
# 最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        dp = [0] * len(nums)
        dp[0] = nums[0]
        result = dp[0]
        for i in range(1, len(nums)):
            dp[i] = max(dp[i-1] + nums[i], nums[i]) #状态转移公式
            result = max(result, dp[i]) #result 保存dp[i]的最大值
        return result
# 392.判断子序列
# s 是否为 t 的子序列
class Solution:
    def isSubsequence(self, s: str, t: str) -> bool:
        dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
        for i in range(1, len(s)+1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = dp[i][j-1]
        if dp[-1][-1] == len(s):
            return True
        return False
#R 0 不同的子序列
#  s 的子序列中 t 出现的个数
class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
        for i in range(len(s)):
            dp[i][0] = 1
        for j in range(1, len(t)):
            dp[0][j] = 0
        for i in range(1, len(s)+1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j]
        return dp[-1][-1]
# 1.   两个字符串的删除操作
# 每步可以删除任意一个字符串中的一个字符
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        dp = [[0] * (len(word2)+1) for _ in range(len(word1)+1)]
        for i in range(len(word1)+1):
            dp[i][0] = i
        for j in range(len(word2)+1):
            dp[0][j] = j
        for i in range(1, len(word1)+1):
            for j in range(1, len(word2)+1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1]
                else:
                    dp[i][j] = min(dp[i-1][j-1] + 2, dp[i-1][j] + 1, dp[i][j-1] + 1)
        return dp[-1][-1]
# 1.  编辑距离
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        dp = [[0] * (len(word2)+1) for _ in range(len(word1)+1)]
        for i in range(len(word1)+1):
            dp[i][0] = i
        for j in range(len(word2)+1):
            dp[0][j] = j
        for i in range(1, len(word1)+1):
            for j in range(1, len(word2)+1):
                if word1[i-1] == word2[j-1]:
                    dp[i][j] = dp[i-1][j-1]
                else:
                    dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1
        return dp[-1][-1]
# 1.   回文子串
字符串中有多少个回文子串dp[i][j] 表示子串s[ij]是否是回文子串
class Solution:
    def countSubstrings(self, s: str) -> int:
        n = len(s)
        dp = [[False] * n for _ in range(n)]
        result = 0
        for i in range(n):
            dp[i][i] = True
            result += 1
        for i in range(n - 1, -1, -1):
            for j in range(i + 1, n):
                dp[i][j] = (s[i] == s[j]) and (j - i <= 1 or dp[i + 1][j - 1])
                if dp[i][j]:
                    result += 1
        return result
#R 0 最长回文子序列
class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        dp = [[0] * len(s) for _ in range(len(s))]
        for i in range(len(s)):
            dp[i][i] = 1
        for i in range(len(s)-1, -1, -1):
            for j in range(i+1, len(s)):
                if s[i] == s[j]:
                    dp[i][j] = dp[i+1][j-1] + 2
                else:
                    dp[i][j] = max(dp[i+1][j], dp[i][j-1])
        return dp[0][-1]
#R 33.9 Wildcard Matching/通配符匹配 (Hard)
# '?' 可以匹配任何单个字符。'*' 可以匹配任意字符序列(包括空字符序列)。
class Solution:
    def isMatch(self, s: str, p: str) -> bool:
        m, n = len(s), len(p)
        f = [[False] * (n + 1) for _ in range(m + 1)]
        # 初始条件:翻译自递归边界
        # 对应边界 i<0 and j < 0 return True
        f[0][0] = True
        # 对应边界 i<0 j>=0的处理
        for j in range(n):
            f[0][j + 1] = p[j] == '*' and f[0][j]
        # 对应边界 j<0 (f初始化已经赋值了False, 不用写)
        for i in range(m):
            for j in range(n):
                if s[i] == p[j] or p[j] == '?':
                    f[i + 1][j + 1] = f[i][j]
                elif p[j] == '*':
                    f[i + 1][j + 1] = f[i][j + 1] or f[i + 1][j]
        return f[m][n]
# 64 Minimum Path Sum/最小路径和 (Medium)
# dp[i][j] 的值代表直到走到 (i,j) 的最小路径和。
class Solution:
    def minPathSum(self, grid: [[int]]) -> int:
        for i in range(len(grid)):
            for j in range(len(grid[0])):
                if i == j == 0: continue
                elif i == 0:  grid[i][j] = grid[i][j - 1] + grid[i][j]
                elif j == 0:  grid[i][j] = grid[i - 1][j] + grid[i][j]
                else: grid[i][j] = min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j]
        return grid[-1][-1]
#R 91 Decode Ways/解码方法 (Medium)
# "12" 可以解码为 "AB"1 2或者 "L"12  时间复杂度O(n),空间复杂度O(n)
class Solution:
    def numDecodings(self, s: str) -> int:
        size = len(s)
        #特判
        if size == 0:
            return 0
        dp = [0]*(size+1)
        dp[0] = 1 
        for i in range(1,size+1):
            t = int(s[i-1])
            if t>=1 and t<=9:
                dp[i] += dp[i-1] #最后一个数字解密成一个字母
            if i >=2:#下面这种情况至少要有两个字符
                t = int(s[i-2])*10 + int(s[i-1])
                if t>=10 and t<=26:
                    dp[i] += dp[i-2]#最后两个数字解密成一个一个字母
        return dp[-1]
# 97 Interleaving String/交错字符串 (Medium)
# dp[i][j] 表示 s1 的前 i 个字符和 s2的前 j 个字符是否能构成s3 的前 i+j 个字符
class Solution:
    def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
        len1=len(s1)
        len2=len(s2)
        len3=len(s3)
        if(len1+len2!=len3):
            return False
        dp=[[False]*(len2+1) for i in range(len1+1)]
        dp[0][0]=True
        for i in range(1,len1+1):
            dp[i][0]=(dp[i-1][0] and s1[i-1]==s3[i-1])
        for i in range(1,len2+1):
            dp[0][i]=(dp[0][i-1] and s2[i-1]==s3[i-1])
        for i in range(1,len1+1):
            for j in range(1,len2+1):
                dp[i][j]=(dp[i][j-1] and s2[j-1]==s3[i+j-1]) or (dp[i-1][j] and s1[i-1]==s3[i+j-1])
        return dp[-1][-1]
# 152 Maximum Product Subarray/乘积最大子数组 (Medium)
# 右端点下标为 i 的子数组的最大/小乘积
class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        n = len(nums)
        f_max = [0] * n
        f_min = [0] * n
        f_max[0] = f_min[0] = nums[0]
        for i in range(1, n):
            x = nums[i]
            # 把 x 加到右端点为 i-1 的(乘积最大/最小)子数组后面,
            # 或者单独组成一个子数组,只有 x 一个元素
            f_max[i] = max(f_max[i - 1] * x, f_min[i - 1] * x, x)
            f_min[i] = min(f_max[i - 1] * x, f_min[i - 1] * x, x)
        return max(f_max)
# 198 House Robber (Easy)
# 每个房屋存放金额的非负整数数组,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
class Solution:
    def rob(self, nums: List[int]) -> int:
        f = [0] * (len(nums) + 2)
        for i, x in enumerate(nums):
            f[i + 2] = max(f[i + 1], f[i] + x)
        return f[-1]
# 221 Maximal Square/最大正方形 (Medium)
# f[i][j]代表在matrix[i-1][j-1]处能构成的最大正方形
class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        m, n = len(matrix), len(matrix[0])
        f = [[0 for _ in range(n + 1)] for _ in range(m + 1)]
        max_len = 0
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if matrix[i - 1][j - 1] == "1":
                    f[i][j] = (
                        min(
                            f[i - 1][j],
                            f[i][j - 1],
                            f[i - 1][j - 1],
                        )
                        + 1
                    )
                    max_len = max(max_len, f[i][j])
        return max_len**2
#R 311.66 Burst Balloons/戳气球 (Medium)
# nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
# 定义 f[i][j] 表示戳破区间 [i,j] 内的所有气球能得到的最多硬币数
class Solution:
    def maxCoins(self, nums: List[int]) -> int:
        n = len(nums)
        arr = [1] + nums + [1]
        f = [[0] * (n + 2) for _ in range(n + 2)]
        for i in range(n - 1, -1, -1):
            for j in range(i + 2, n + 2):
                for k in range(i + 1, j):
                    f[i][j] = max(f[i][j], f[i][k] + f[k][j] + arr[i] * arr[k] * arr[j])
        return f[0][-1]
#R 377 Combination Sum IV/组合总和 Ⅳ (Medium) 
# 与39题不同之处顺序不同的序列被视作不同的组合。
class Solution(object):
    def combinationSum4(self, nums, target):
        dp = [0] * (target + 1)
        dp[0] = 1
        res = 0
        for i in range(target + 1):
            for num in nums:
                if i >= num:
                    dp[i] += dp[i - num]
        return dp[target]
#H 0 Arithmetic Slices II - Subsequence/等差数列划分 II - 子序列 (Hard) 
# 所有等差子序列的数目   dp_ik=\sum_j^i-1 (dp_jk+1)  第一维用哈希表提高查询效率、节省空间
class Solution:
    def numberOfArithmeticSlices(self, nums: List[int]) -> int:
        n,ans=len(nums),0
        dp=[defaultdict(int) for _ in range(n)]
        for i,num in enumerate(nums):
            for j in range(i):
                k=num-nums[j]
                dp[i][k]+=dp[j][k]+1
                ans+=dp[j][k]
        return ans
#H 0 Longest Arithmetic Subsequence/最长等差数列 (Medium)
# 以 a[i] 结尾的最长等差子序列公差及其长度存到一个哈希表dp(i)={d:L}
class Solution:
    def longestArithSeqLength(self, a: List[int]) -> int:
        f = [{} for _ in range(len(a))]
        for i, x in enumerate(a):
            for j in range(i - 1, -1, -1):
                d = x - a[j]  # 公差
                if d not in f[i]:
                    f[i][d] = f[j].get(d, 1) + 1
        return max(max(d.values()) for d in f[1:])
#H 873 Length of Longest Fibonacci Subsequence/最长的斐波那契子序列的长度 (Medium)
# 这f[x][y]代表了以数字x和y结尾的最大斐波那契序列长度。f[x][y]=f[yx][x]+1  由于数据范围很大,用哈希表嵌套哈希表实现。
class Solution:
    def lenLongestFibSubseq(self, A: List[int]) -> int:
        
        dp = {}
        res = 0
        tempA = set(A)
        for i in range(1,len(A)):
            for j in range(i):
                diff = A[i]-A[j]
                if diff <A[j] and diff in tempA:
                    dp[(A[j],A[i])] = dp.get((diff,A[j]),2)+1
                    res = max(res,dp[(A[j],A[i])])
        return res
#R 467 Unique Substrings in Wraparound String/环绕字符串中唯一的子字符串 (Medium)  字符串 s = "zab" 有六个子字符串 ("z", "a", "b", "za", "ab", and "zab") 在 base 中
# dp[i] 表示以 s[i] 结尾的最长连续有效子串的长度。
class Solution:
    def findSubstringInWraproundString(self, s: str) -> int:
        if not s:
            return 0
        dp = {}  # 记录以某个字符结尾的最长连续子串长度
        max_len = 0  # 当前连续子串长度
        for i in range(len(s)):
            if i > 0 and (ord(s[i]) - ord(s[i-1]) == 1 or (s[i-1] == 'z' and s[i] == 'a')):
                max_len += 1
            else:
                max_len = 1            
            dp[s[i]] = max(dp.get(s[i], 0), max_len)
        return sum(dp.values())
#R 688 Knight Probability in Chessboard/骑士在棋盘上的概率 (Medium)
# dp[step][i][j]=  1/8  sum_di,dj  dp[step1][i+di][j+dj]
class Solution:
    def knightProbability(self, n: int, k: int, row: int, column: int) -> float:
        dp = [[[0] * n for _ in range(n)] for _ in range(k + 1)]
        for step in range(k + 1):
            for i in range(n):
                for j in range(n):
                    if step == 0:
                        dp[step][i][j] = 1
                    else:
                        for di, dj in ((-2, -1), (-2, 1), (2, -1), (2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2)):
                            ni, nj = i + di, j + dj
                            if 0 <= ni < n and 0 <= nj < n:
                                dp[step][i][j] += dp[step - 1][ni][nj] / 8
        return dp[k][row][column]
# 740 Delete and Earn/删除并获得点数 (Medium)
# 必须删除 所有 等于 nums[i] - 1 和 nums[i] + 1 的元素。返回你能通过这些操作获得的最大点数。
# 数组 sum 记录数组 nums 中所有相同元素之和,即 sum[x]=x⋅c_x
class Solution:
    def deleteAndEarn(self, nums: List[int]) -> int:
        maxVal = max(nums)
        total = [0] * (maxVal + 1)
        for val in nums:
            total[val] += val
        def rob(nums: List[int]) -> int:
            size = len(nums)
            first, second = nums[0], max(nums[0], nums[1])
            for i in range(2, size):
                first, second = second, max(first + nums[i], second)
            return second
        return rob(total)
#R 877 Stone Game/石子游戏 (Medium)
class Solution:
    def stoneGame(self, piles: List[int]) -> bool:
        N = len(piles)
        f = [[0]*(N+1) for _ in range(N+1)] # 防止出界
        for l in range(N):
            for i in range(N-l):
                j = i+l
                f[i][j] = max(piles[i]-f[i+1][j],
                              piles[j]-f[i][j-1])
        return f[0][N-1]>0
# 0 Maximum Sum Circular Subarray/环形子数组的最大和 (Medium)
# 分类讨论一子数组没有跨过边界在nums中间。最大非空子数组和力扣第53题)
# 分类讨论二子数组跨过边界在nums两端。其余元素和越小子数组和越大。
class Solution:
    def maxSubarraySumCircular(self, nums: List[int]) -> int:
        max_s = -inf  # 最大子数组和,不能为空
        min_s = 0     # 最小子数组和,可以为空
        max_f = min_f = 0
        for x in nums:
            # 以 nums[i-1] 结尾的子数组选或不选(取 max+ x = 以 x 结尾的最大子数组和
            max_f = max(max_f, 0) + x
            max_s = max(max_s, max_f)   # 最大遍历每个结尾
            # 以 nums[i-1] 结尾的子数组选或不选(取 min+ x = 以 x 结尾的最小子数组和
            min_f = min(min_f, 0) + x
            min_s = min(min_s, min_f)
        if sum(nums) == min_s:
            return max_s
        return max(max_s, sum(nums) - min_s)
#R 1000 Minimum Cost to Merge Stones/合并石头的最低成本 (Hard)
# 每次移动需要将连续的k堆石头合并为一堆成本为这k堆中石头的总数。
# 定义 f[i][j][k] 表示将 [i,j] 合并成k堆的最小成本  dp[i][j][k] = min(dp[i][m][1] + dp[m+1][j][k-1]) i≤m<j
    def mergeStones(self, stones: List[int], K: int) -> int:
        n = len(stones)
        if (n - 1) % (K-1): return -1
        def get(i, j):
            return sums[j+1] - sums[i]
        dp = [[[float("inf")] * (K+1) for _ in range(n)] for _ in range(n)]
        sums = [0] * (1+n)
        for i in range(1, n+1): sums[i] = sums[i-1] + stones[i-1]
        for i in range(n): dp[i][i][1] = 0
        for l in range(2, n+1):
            for i in range(n - l + 1):
                j = i + l - 1
                for k in range(2, K+1):
                    for m in range(i, j):
                        dp[i][j][k] = min(dp[i][j][k], dp[i][m][1] + dp[m+1][j][k-1])
                dp[i][j][1] = dp[i][j][K] + get(i, j)  #合并成一堆特殊情况不可以从合并成0获得
        return dp[0][n-1][1]
# 0 Longest String Chain/? (Medium)
# 返回 前身单词链的 最长可能长度
class Solution:
    def longestStrChain(self, words: List[str]) -> int:
        words.sort(key=len)
        f = {}  # 不要用 defaultdict这会在字符串不存在的时候插入字符串
        for s in words:
            res = 0
            for i in range(len(s)):  # 枚举去掉 s[i]
                res = max(res, f.get(s[:i] + s[i + 1:], 0))
            f[s] = res + 1
        return max(f.values())
# 1186 Maximum Subarray Sum with One Deletion/删除一次得到子数组最大和 (Medium)
# f[i][j] 表示子数组的右端点下标是ij=不能/必须删除数字的情况下,子数组元素和的最大值。
class Solution:
    def maximumSum(self, arr: List[int]) -> int:
        f = [[-inf] * 2] + [[0, 0] for _ in arr]
        for i, x in enumerate(arr):
            f[i + 1][0] = max(f[i][0], 0) + x
            f[i + 1][1] = max(f[i][1] + x, f[i][0])
        return max(max(r) for r in f)
#R 1395 Count Number of Teams/统计作战单位数 (中等)
# 3个士兵组成一个作战单位单调的作战单位的方案数。
# dp[i]记录的是第i个数之前比其值小的数的个数
class Solution:
    def numTeams(self, rating: List[int]) -> int:
        def func(nums):
            dp = [0] * len_
            res = 0
            for i in range(1, len_):
                idx = i - 1
                while idx >= 0:
                    if nums[i] > nums[idx]:
                        dp[i] += 1
                        if dp[idx] > 0:
                            res += dp[idx]
                    idx -= 1
            return res
        len_ = len(rating)
        return func(rating[::-1]) + func(rating)          

其他

#最大公约数
def gcd(a, b):
    while b:
        a, b = b, a % b
    return a
#质因数分解
def prime_factors(n):
    factors = []
    divisor = 2
    while n > 1:
        while n % divisor == 0:
            factors.append(divisor)
            n //= divisor
        divisor += 1
    return factors
29.除法
def divide(dividend, divisor):
    INT_MAX = 2**31 - 1
    INT_MIN = -2**31
    # 处理特殊情况
    if divisor == 0:
        return INT_MAX
    if dividend == 0:
        return 0
    # 判断结果的正负性
    sign = 1
    if (dividend < 0) ^ (divisor < 0):
        sign = -1
    # 将被除数和除数都转为正数,以防止整数溢出
    dividend, divisor = abs(dividend), abs(divisor)
    # 使用位运算逐步减去除数的倍数
    result = 0
    while dividend >= divisor:
        temp_divisor, multiple = divisor, 1
        while dividend >= temp_divisor:
            dividend -= temp_divisor
            result += multiple
            # 左移一位相当于将除数翻倍
            temp_divisor <<= 1
            multiple <<= 1
    # 根据结果的正负性返回最终值
    result *= sign
    # 处理溢出情况
    if result > INT_MAX:
        return INT_MAX
    elif result < INT_MIN:
        return INT_MIN
    else:
        return result
311.稀疏矩阵乘法
def multiply(A, B):
    # 确定 A 和 B 的行数和列数
    rows_A, cols_A = len(A), len(A[0])
    rows_B, cols_B = len(B), len(B[0])
    # 初始化结果矩阵 C
    C = [[0] * cols_B for _ in range(rows_A)]
    # 遍历 A 的每个元素
    for i in range(rows_A):
        for j in range(cols_A):
            # 如果 A 的元素不为 0则遍历 B 对应列的元素进行乘法累加
            if A[i][j] != 0:
                for k in range(cols_B):
                    C[i][k] += A[i][j] * B[j][k]
    return C
# a/b向0靠拢a%b向-b或者b靠拢即a%b = a  (a/b)*b; 如果取余一定要 [0,n-1],可以: (a%n + n) % n;
# 一堆string 转化成数字时可以用map存储已经转化的string->number. 从左到右先检验剩下的时候再map里如果在 left*10^(right size)+rightelse left = left*10 + 第i位并存入map
# K个字母构成长度为n的字符相邻最多两个一样a[n]最后两个不一样b[n]最后两个一样一共c[n]=a[n]+b[n].则a[n]=c[n]*(K-1);b[n]=a[n-1]

# 0 ?/服务中心的最佳位置 (困难)  
# 到所有客户的欧几里得距离的总和最小
class Solution:
    def getMinDistSum(self, positions: List[List[int]]) -> float:
        n = len(positions)
        #### 梯度下降 Gradient Descent GD, 也可以尝试批量梯度下降Batch Gradient Descent, BGD
        epoches = 10 ** 5      #迭代次数
        eps = 1e-7          #epsilon 浮点小相对误差限
        lr = 1.11            #学习率 learning rate
        decay = 0.003        #学习率的衰减率
        def dist(xc, yc):    #中心点[xc,yc]到所有点的距离之和
            res = 0.0
            for x, y in positions:
                res += ((x-xc)**2 + (y-yc)**2) ** 0.5
            return res
        xc = sum(p[0] for p in positions) / n
        yc = sum(p[1] for p in positions) / n
        for epoc in range(epoches):
            dx = 0.0
            dy = 0.0
            for x, y in positions:
                dx += (xc-x) / (  ((xc-x)**2 + (yc-y)**2) ** 0.5 + eps )
                dy += (yc-y) / (  ((xc-x)**2 + (yc-y)**2) ** 0.5 + eps )
            xc_pre, yc_pre = xc, yc
            xc -= dx * lr
            yc -= dy * lr
            lr *= (1.0 - decay)
            delta = ((xc-xc_pre)**2 + (yc-yc_pre)**2) ** 0.5
            if delta < eps:
                break
        return dist(xc, yc)
# 1779 ?/找到最近的有相同 X 或 Y 坐标的点 (简单) 
# 返回距离你当前位置 曼哈顿距离 最近
class Solution:
    def nearestValidPoint(self, x: int, y: int, points: List[List[int]]) -> int:
        ans, mi = -1, inf
        for i, (a, b) in enumerate(points):
            if a == x or b == y:
                d = abs(a - x) + abs(b - y)
                if mi > d:
                    ans, mi = i, d
        return ans
# 1049.9 Actors and Directors Who Cooperated At Least Three Times * $/? (Easy)
import pandas as pd
def actors_and_directors(actor_director: pd.DataFrame) -> pd.DataFrame:
    # 使用 groupby 和 count 函数对 actor_id 和 director_id 进行分组计数
    counts = actor_director.groupby(['actor_id', 'director_id']).size().reset_index(name='count')
    # 从计数结果中筛选出合作次数大于等于3次的组合
    result = counts[counts['count'] >= 3][['actor_id', 'director_id']]
    return result

难题

# 218 The Skyline Problem/天际线问题 (Hard)
# 分治时间复杂度为nlog(n)
class Solution:
    def getSkyline(self, buildings):
        if not buildings: return []
        if len(buildings) == 1:
            return [[buildings[0][0], buildings[0][2]], [buildings[0][1], 0]]
        mid = len(buildings) // 2
        left = self.getSkyline(buildings[:mid])
        right = self.getSkyline(buildings[mid:])
        return self.merge(left, right)
    def merge(self, left, right):
        # 记录目前左右建筑物的高度
        lheight = rheight = 0
        # 位置
        l = r = 0
        # 输出结果
        res = []
        while l < len(left) and r < len(right):
            if left[l][0] < right[r][0]:
                # current point
                cp = [left[l][0], max(left[l][1], rheight)]
                lheight = left[l][1]
                l += 1
            elif left[l][0] > right[r][0]:
                cp = [right[r][0], max(right[r][1], lheight)]
                rheight = right[r][1]
                r += 1
            # 相等情况
            else:
                cp = [left[l][0], max(left[l][1], right[r][1])]
                lheight = left[l][1]
                rheight = right[r][1]
                l += 1
                r += 1
            # 和前面高度比较,不一样才加入
            if len(res) == 0 or res[-1][1] != cp[1]:
                res.append(cp)
        # 剩余部分添加进去
        res.extend(left[l:] or right[r:])
        return res
# 849.9 Rectangle Area II/矩形面积 II (Hard)
# 线段树 + 扫描线   太难了
class MyCalendarTwo: #线段树方法hard
    def __init__(self):
        self.tree = {}
    def update(self, start: int, end: int, val: int, l: int, r: int, idx: int) -> None:
        if r < start or end < l:
            return
        if start <= l and r <= end:
            p = self.tree.get(idx, [0, 0])
            p[0] += val
            p[1] += val
            self.tree[idx] = p
            return
        mid = (l + r) // 2
        self.update(start, end, val, l, mid, 2 * idx)
        self.update(start, end, val, mid + 1, r, 2 * idx + 1)
        p = self.tree.get(idx, [0, 0])
        p[0] = p[1] + max(self.tree.get(2 * idx, (0,))[0], self.tree.get(2 * idx + 1, (0,))[0])
        self.tree[idx] = p
    def book(self, start: int, end: int) -> bool:
        self.update(start, end - 1, 1, 0, 10 ** 9, 1)
        if self.tree[1][0] > 2:
            self.update(start, end - 1, -1, 0, 10 ** 9, 1)
            return False
        return True
# 2663 Lexicographically Smallest Beautiful String/字典序最小的美丽字符串 (困难) hd
# 返回一个长度为n的美丽字符串该字符串还满足在字典序大于 s 的所有美丽字符串中字典序最小。
# 1 不能出现 s[i]=s[i1] 以及 s[i]=s[i2]; 2 小写字母表的前k个字母组成;3 修改的位置越靠右越好。s 视作一个 k 进制数,不停地末尾加一
class Solution:
    def smallestBeautifulString(self, s: str, k: int) -> str:
        a = ord('a')
        k += a
        s = list(map(ord, s)) #将字符串s转换为ASCII码列表
        n = len(s)
        i = n - 1  # 从最后一个字母开始
        s[i] += 1  # 先加一
        while i < n:
            if s[i] == k:  # 需要进位
                if i == 0:  # 无法进位
                    return ""
                # 进位
                s[i] = a
                i -= 1
                s[i] += 1
            elif i and s[i] == s[i - 1] or i > 1 and s[i] == s[i - 2]:
                s[i] += 1  # 如果 s[i] 和左侧的字符形成回文串,就继续增加 s[i]
            else:
                i += 1  # 反过来检查后面是否有回文串
        return ''.join(map(chr, s))
# 0 Optimal Account Balancing $/最优账单平衡 (Hard)
# 输入: [[0,1,10],[2,0,5]]0 给 1 $10   2 给 0 $5 。  输出2
# 我们应该将这些人分成尽可能多的合计总金额为0的组。我们可以使用状态压缩动态规划通过枚举子集的方式来进行求解。
# 令dp[state]表示state所对应的这组人所能够分成的最多的组数。注意我们只有在sum[state]=0的情况下才去枚举state的子集。
# 转移方程为dp[state]=max_{sub⫋state} (dp[sub])+1。最后的答案就是ndp[2^n 1]其中n是总金额不为0的人数。
class Solution:  
    def minTransfers(self, transactions: List[List[int]]) -> int:  
        from collections import defaultdict  

        # 第一步:计算每个人的净余额  
        balance = defaultdict(int)  
        for sender, receiver, amount in transactions:  
            balance[sender] += amount      # 发送者的余额增加  
            balance[receiver] -= amount     # 接收者的余额减少  

        # 第二步:筛选出余额不为零的人  
        v = [account for account in balance.values() if account != 0]  
        n = len(v)  # 非零余额的数量  
        
        # 第三步:计算所有子集的余额和  
        sum_ = [0] * (1 << n)  # 初始化大小为 2^n 的 sum_ 数组  
        for i in range(1, 1 << n):  
            for j in range(n):  
                if i & (1 << j):  # 如果子集中包含第 j 个人  
                    sum_[i] = sum_[i ^ (1 << j)] + v[j]  # 更新该子集的余额和  
                    break  

        # 第四步:初始化动态规划数组  
        dp = [0] * (1 << n)  
        
        for i in range(1, 1 << n):  
            if sum_[i] != 0:  # 如果子集的余额和不为零,跳过  
                continue  
            
            dp[i] = 1  # 初始至少需要一次转账  
            
            # 寻找子集的子掩码  
            si = (i - 1) & i  # 使用 si 变量来存放当前子集的子掩码  
            while si:  # 当 si 不为零时继续  
                if dp[si]:  # 仅考虑有效的子掩码  
                    dp[i] = max(dp[i], dp[si] + 1)  # 更新当前子集的最大转账次数  
                si = (si - 1) & i  # 获取下一个子掩码  

        # 最终结果是总人数减去能消除的转账数量  
        return n - dp[(1 << n) - 1]  # dp[(1 << n) - 1] 表示所有人的组合
# 643.99 Maximum Average Subarray II $/子数组最大平均数 II (Hard)
# 找出长度大于等于 k 最大平均值的连续子数组的平均值。计算误差小于 10-5。
# 判断avg是大于还是小于答案用累加和技巧计算长度大于等于 k的区间
class Solution:
    def findMaxAverage(self, nums: List[int], k: int) -> float: 
        def check(avg):
            # 如果是求长度等于 k 的区间的区间和使用滑动窗口维护首尾前缀和见643.最大平均子段和)
            # 这一题是大于等于 k 。 我们需要知道以 end 结尾,长度大于等于 k 的区间中最大的区间和
            # 多维护一个 start_sum 的最小值即可。 end_sum - min_sum 即为所求区间和最大值 
            end_sum = sum(num - avg for num in nums[:k])
            start_sum = min_start_sum = 0
            for end in range(k, len(nums)):
                if end_sum >= min_start_sum:
                    return True
                end_sum += nums[end] - avg
                start_sum += nums[end-k] - avg
                min_start_sum = min(min_start_sum, start_sum)
            return end_sum >= min_start_sum 
        # 二分法
        l, r = min(nums), max(nums)
        while r - l > 1e-5:
            mid = (l+r) / 2
            if check(mid):  # 存在符合条件的区间,其平均值大于等于 mid下界向上收缩
                l = mid 
            else:
                r = mid 
        return l