diff --git a/python代码R.md b/python代码R.md deleted file mode 100644 index 7ab5899..0000000 --- a/python代码R.md +++ /dev/null @@ -1,2222 +0,0 @@ -```python -#R 75 Sort Colors/颜色分类 (Medium) -# p0:指向 0 应该放置的位置;p0左边全是0, p0本身并不包括0 -# p2:指向 2 应该放置的位置;p2右边全是0, p2本身并不包括2 -# i:当前遍历位置 -class Solution: - def sortColors(self, nums: List[int]) -> None: - p0, i , p2 = 0,0,len(nums) - 1 - while i <= p2: - if nums[i] == 0: - nums[i], nums[p0] = nums[p0], nums[i] - p0 += 1 - i += 1 - elif nums[i] == 2: - nums[i], nums[p2] = nums[p2], nums[i] - p2 -= 1 - # 注意:i 不增加,因为换过来的 nums[i] 还要检查 - else: - i += 1 -``` - -```python -#R 259 3Sum Smaller $/较小的三数之和 (Medium) -# satisfy the condition nums[i] + nums[j] + nums[k] < target -class Solution: - def threeSumSmaller(self, nums, target): - if len(nums) < 3: - return 0 - res = 0 - nums.sort() - n = len(nums) - for i in range(n - 2): - left, right = i + 1, n - 1 - while left < right: - if nums[i] + nums[left] + nums[right] < target: - res += right - left # 所有 (nums[i], nums[left], nums[left+1]...nums[right]) 都满足条件 - left += 1 - else: - right -= 1 - return res -``` - -```python -#H 1163 Last Substring in Lexicographical Order/按字典序排在最后的子串 (Hard) -# 找出它的所有子串并按字典序排列,返回排在最后的那个子串。 -# i指向的是当前找到字典序最大的字符,j指向的是当前要进行比较的字符。使用一个位移指针k,来比较i和j构成的子串[i,..,i + k]和[j,...,j + k]的顺序。i始终指向当前找到字典序最大的字符 -class Solution: - def lastSubstring(self, s: str) -> str: - n = len(s) - i = 0 - j = 1 - k = 0 - while j + k < n: - if s[i + k] == s[j + k]: - k += 1 - elif s[i + k] < s[j + k]: - i += k + 1 - k = 0 - if i >= j: - j = i + 1 - else: - j += k + 1 - k = 0 - return s[i:] -``` - - -# 滑动窗口 - -```python -#R 1358 Number of Substrings Containing All Three Characters/包含所有三种字符的子字符串数目 (Medium) -# 请你返回 a,b 和 c 都 至少 出现过一次的子字符串数目。 -# 滑动窗口的内层循环结束时,右端点固定在 right,左端点在 0,1,2,…,left−1 的所有子串都是合法的,这一共有 left 个,加入答案。 -class Solution: - def numberOfSubstrings(self, s: str) -> int: - ans = left = 0 - cnt = defaultdict(int) - for c in s: - cnt[c] += 1 - while len(cnt) == 3: - out = s[left] # 离开窗口的字母 - cnt[out] -= 1 - if cnt[out] == 0: - del cnt[out] - left += 1 - ans += left - return ans -``` - -```python -#R 395 Longest Substring with At Least K Repeating Characters/至少有 K 个重复字符的最长子串 (Medium) s = "ababbc", k = 2 最长子串为 "ababb" -class Solution: - def longestSubstring(self, s: str, k: int) -> int: - ans = 0 - for i in range(1,27): #分治:遍历可能的字符种类数量(1~26) - cnt = Counter() #计数 - unique = 0 #字符种类 - num_k = 0 #满足出现次数大于等于k的字符串数量 - left = 0 - for right,char in enumerate(s): - if cnt[char] == 0: - unique += 1 - cnt[char] += 1 - if cnt[char] == k: - num_k += 1 - #当字符串种类超过i时,移动左窗口 - while unique > i: - left_char = s[left] - if cnt[left_char] == k: - num_k -= 1 #因为要一直移动左窗口,所以计数会一直减少,当进入循环时刚好==k时,再减一后,num_k就要减一了 - cnt[left_char] -= 1 - if cnt[left_char] == 0: #如果减完了,种类就少一个 - unique -= 1 - left += 1 - if unique == i and num_k == i: #当种类满足要求,且子串里的数量都满足>=k时,就更新ans - ans = max(ans ,right - left +1) - return ans -``` - -```python -#R 424 Longest Repeating Character Replacement/替换后的最长重复字符 (Medium) 可替换字符k次 -class Solution: - def characterReplacement(self, s: str, k: int) -> int: - count = [0 for _ in range(26)] #记录当前窗口的字母出现次数 - left = 0 #滑动窗口左边界 - right = 0 #滑动窗口右边界 - retval = 0 #最长窗口长度 - while right < len(s): - count[ord(s[right])-ord('A')] += 1 - benchmark = max(count) #选择出现次数最多的字母为基准 - others = sum(count) - benchmark #则其他字母需要通过替换操作来变为基准 - if others <= k: #通过与K进行比较来判断窗口是进行扩张? - right += 1 - retval = max(retval, right-left)#记录当前有效窗口长度 - else: #通过与K进行比较来判断窗口还是进行位移? - count[ord(s[left])-ord('A')] -= 1 - left += 1 - right += 1 #这里注意:位移操作需要整个向右移,不仅仅只是left向右 - return retval #返回最长窗口长度 -``` - -```python -#H LeetCode 33 "Search in Rotated Sorted Array" -def search(nums, target): - left, right = 0, len(nums) - 1 - while left <= right: - mid = (left + right) // 2 - if nums[mid] == target: - return mid - # 判断哪一部分是有序的 - if nums[left] <= nums[mid]: # 左半段有序 - if nums[left] <= target < nums[mid]: - right = mid - 1 - else: - left = mid + 1 - else: # 右半段有序 - if nums[mid] < target <= nums[right]: - left = mid + 1 - else: - right = mid - 1 - return -1 # 没有找到目标值 -``` - -```python -#H 81 Search in Rotated Sorted Array II/搜索旋转排序数组 II (Medium) -# 数组中的值不必互不相同,基于 33 题的简洁写法,只需增加一个 if -class Solution: - def search(self, nums: List[int], target: int) -> bool: - if not nums: - return False - n = len(nums) - if n == 1: - return nums[0] == target - - l, r = 0, n - 1 - while l <= r: - mid = (l + r) // 2 - if nums[mid] == target: - return True - if nums[l] == nums[mid] and nums[mid] == nums[r]: - l += 1 - r -= 1 - elif nums[l] <= nums[mid]: - if nums[l] <= target and target < nums[mid]: - r = mid - 1 - else: - l = mid + 1 - else: - if nums[mid] < target and target <= nums[n - 1]: - l = mid + 1 - else: - r = mid - 1 - return False -``` - -```python -#R 378 Kth Smallest Element in a Sorted Matrix/有序矩阵中第 K 小的元素 (Medium) -class Solution: - def kthSmallest(self, matrix: List[List[int]], k: int) -> int: - n = len(matrix) - def check(mid): - """遍历获取较小元素部分元素总数,并与k值比较""" - i, j = n-1, 0 - num = 0 - while i >= 0 and j < n: - if matrix[i][j] <= mid: - # 当前元素小于mid,则此元素及上方元素均小于mid - num += i + 1 - # 向右移动 - j += 1 - else: - # 当前元素大于mid,则向上移动,直到找到比mid小的值,或者出矩阵 - i -= 1 - return num >= k - left, right = matrix[0][0], matrix[-1][-1] - while left < right: - mid = (left + right) >> 1 - if check(mid): - # 满足 num >= k,范围太大,移动right至mid, 范围收缩 - right = mid - else: - left = mid + 1 - return left -``` - -```python -#R 410 Split Array Largest Sum/分割数组的最大值 (Hard) -# 分成 k 个非空的连续子数组,使得这 k 个子数组各自和的最大值 最小。 -class Solution: - def splitArray(self, nums: List[int], k: int) -> int: - def check(mx): - s, cnt = inf, 0 - for x in nums: - s += x - if s > mx: - s = x - cnt += 1 - return cnt <= k - left, right = max(nums), sum(nums) - return left + bisect_left(range(left, right + 1), True, key=check) -``` - -```python -#R 中位数可以奇偶统一表示 -def get_median_universal(nums): - sorted_nums = sorted(nums) - n = len(sorted_nums) - median = (sorted_nums[(n - 1) // 2] + sorted_nums[n // 2]) / 2.0 - return median -# Median of Two Sorted Arrays -import bisect -class Solution: - def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float: - n = len(nums1) + len(nums2) - n1, n2 = len(nums1), len(nums2) - if n1 == 0: return (nums2[n2//2] + nums2[(n2-1)//2]) / 2 - if n2 == 0: return (nums1[n1//2] + nums1[(n1-1)//2]) / 2 - minN, maxN = min(nums1[0], nums2[0]), max(nums1[-1], nums2[-1]) - nums = list(range(minN, maxN+1)) - def func(x): - # nums1和nums2中<=x的数的个数(记为y),和x单调 - k1 = bisect.bisect_right(nums1, x) - k2 = bisect.bisect_right(nums2, x) - return k1 + k2 - k1 = bisect_right(nums, n//2, key=func) - if n % 2: k2 = k1 - else: k2 = bisect_right(nums, (n-1)//2, key=func) - return (nums[k1] + nums[k2]) / 2 -``` - -```python -#R 9 回文数 -class Solution: - def isPalindrome(self, x: int) -> bool: - # 同样地,如果数字的最后一位是 0,为了使该数字为回文,则其第一位数字也应该是 0 - if x < 0 or (x % 10 == 0 and x != 0): - return False - reverted_number = 0 - while x > reverted_number: - reverted_number = reverted_number * 10 + x % 10 - x //= 10 - # 当数字长度为奇数时,我们可以通过 reverted_number // 10 去除处于中位的数字。 - # 例如,当输入为 12321 时,在 while 循环的末尾我们可以得到 x = 12,reverted_number = 123, - # 由于处于中位的数字不影响回文(它总是与自己相等),所以我们可以简单地将其去除。 - return x == reverted_number or x == reverted_number // 10 -``` - -```python -#R 28. 实现 strStr(),next数组:最长的相同的真前后缀长度 -class Solution: - def getNext(self, next, s): - j = -1 - next[0] = j - for i in range(1, len(s)): - while j >= 0 and s[i] != s[j+1]: - j = next[j] - if s[i] == s[j+1]: - j += 1 - next[i] = j - def strStr(self, haystack: str, needle: str) -> int: - if not needle: - return 0 - next = [0] * len(needle) - self.getNext(next, needle) - j = -1 - for i in range(len(haystack)): - while j >= 0 and haystack[i] != needle[j+1]: - j = next[j] - if haystack[i] == needle[j+1]: - j += 1 - if j == len(needle) - 1: - return i - len(needle) + 1 - return -1 -``` - -```python -#R 767 Reorganize String/重构字符串 (Medium) -# 重新排布其中的字母,使得两相邻的字符不同。 -# 对于每一种元素,循环在不同桶中进行填充,由于桶的个数等于字符串中最多的元素的数目,因此每个桶中不会出现相同的元素,填充完毕后将桶依次相连即为答案 -class Solution: - def reorganizeString(self, s: str) -> str: - cnt, idx = Counter(s), 0 - bucketNum = cnt.most_common(1)[0][1] # 桶的数目等于字符串中最多的元素的数目 - if bucketNum > (len(s) + 1) // 2: return "" - buckets = [[] for _ in range(bucketNum)] - for c, num in cnt.most_common(): - for _ in range(num): - buckets[idx].append(c) - idx = (idx + 1) % bucketNum # 循环在不同桶中进行填充 - return "".join(["".join(bucket) for bucket in buckets]) -``` - -```python -#R 1053.9 Distant Barcodes/距离相等的条形码 (Medium) -# 请你重新排列这些条形码,使其中任意两个相邻的条形码不能相等。 -# 我们先统计数组barcodes中各个数出现的次数,然后按照它们出现的次数从大到小排序,依次填入偶数后奇数 -class Solution: - def rearrangeBarcodes(self, barcodes: List[int]) -> List[int]: - cnt = Counter(barcodes) - barcodes.sort(key=lambda x: (-cnt[x], x)) - n = len(barcodes) - ans = [0] * len(barcodes) - ans[::2] = barcodes[: (n + 1) // 2] - ans[1::2] = barcodes[(n + 1) // 2:] - return ans -``` - -```python -#R 92 Reverse Linked List II/反转链表 II (Medium) -class Solution: - def reverseBetween(self, head: Optional[ListNode], left: int, right: int) -> Optional[ListNode]: - p0 = dummy = ListNode(next=head) - for _ in range(left - 1): - p0 = p0.next - pre = None - cur = p0.next - for _ in range(right - left + 1): - nxt = cur.next - cur.next = pre # 每次循环只修改一个 next,方便大家理解 - pre = cur - cur = nxt - p0.next.next = cur - p0.next = pre - return dummy.next -``` - -```python -#R 146 LRU Cache/LRU 缓存机制 (Medium) -# get 如果关键字 key 存在于缓存中,则返回关键字的值,否则 -1 。 -# put 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该逐出最久未使用的关键字。 -class Node: - # 提高访问属性的速度,并节省内存 - __slots__ = 'prev', 'next', 'key', 'value' - def __init__(self, key=0, value=0): - self.key = key - self.value = value - self.prev = None - self.next = None -class LRUCache: - def __init__(self, capacity: int): - self.capacity = capacity - self.dummy = Node() # 哨兵节点 dummy.prev指向尾部,dummy.next指向头部 - self.dummy.prev = self.dummy - self.dummy.next = self.dummy - self.key_to_node = {} - # 获取 key 对应的节点,同时把该节点移到链表头部 - def get_node(self, key: int) -> Optional[Node]: - if key not in self.key_to_node: # 没有这本书 - return None - node = self.key_to_node[key] # 有这本书 - self.remove(node) # 把这本书抽出来 - self.push_front(node) # 放在最上面 - return node - def get(self, key: int) -> int: - # 返回关键字的值 - node = self.get_node(key) # get_node 会把对应节点移到链表头部 - return node.value if node else -1 - def put(self, key: int, value: int) -> None: - # 插入key-value 。如果关键字数量超过 capacity ,则应该逐出最久未使用的关键字 - node = self.get_node(key) - if node: # 有这本书 - node.value = value # 更新 value - return - self.key_to_node[key] = node = Node(key, value) # 新书 - self.push_front(node) # 放在最上面 - if len(self.key_to_node) > self.capacity: # 书太多了 - back_node = self.dummy.prev - del self.key_to_node[back_node.key] - self.remove(back_node) # 去掉最后一本书 - # 删除一个节点(抽出一本书) - def remove(self, x: Node) -> None: - x.prev.next = x.next - x.next.prev = x.prev - # 在链表头添加一个节点(把一本书放在最上面) - def push_front(self, x: Node) -> None: - x.prev = self.dummy - x.next = self.dummy.next - x.prev.next = x - x.next.prev = x -``` - -```python -#R 0 Decode String/字符串解码 (Medium) "3[a]2[bc]",输出:"aaabcbc" -class Solution: - def decodeString(self, s: str) -> str: - stack, res, multi = [], "", 0 - for c in s: - if c == '[': - stack.append([multi, res]) - res, multi = "", 0 - elif c == ']': - cur_multi, last_res = stack.pop() - res = last_res + cur_multi * res - elif '0' <= c <= '9': - multi = multi * 10 + int(c) - else: - res += c - return res -``` - -```python -#R 227 Basic Calculator II/基本计算器 II (Medium) -# 输入:s = "3+2*2" 输出:7。 当前元素为符号时,更新完栈后要记得更新数字和符号 -class Solution: - def calculate(self, s: str) -> int: - stack = [] - num = 0; sign = '+' - for i in range(len(s)): - if s[i].isdigit(): - num = num*10 + int(s[i]) - if s[i] in '+-*/' or i == len(s)-1: - if sign == '+': - stack.append(num) - elif sign == '-': - stack.append(-num) - elif sign == '*': - stack.append(stack.pop() * num) - else: - stack.append(int(stack.pop() / num)) - num = 0; sign = s[i] - return sum(stack) -``` - -```python -#H 385 Mini Parser/迷你语法分析器 (Medium) -# [123,[456,[789]]] [1,[2]] -class Solution: - def deserialize(self, s: str) -> NestedInteger: - if s[0] != '[': - return NestedInteger(int(s)) - stk = [] - num, negative = 0, False - for i in range(len(s)): - if s[i] == '[': - stk.append(NestedInteger()) - elif s[i] == '-': - negative = True - elif s[i].isdigit(): - num = num * 10 + int(s[i]) - elif s[i] == ',' or s[i] == ']': - if s[i - 1].isdigit(): - if negative: - num *= -1 - stk[-1].add(NestedInteger(num)) - num, negative = 0, False - if s[i] == ']' and len(stk) > 1: - ni = stk.pop() - stk[-1].add(ni) - return stk.pop() -``` - - - -```python -#R 636 Exclusive Time of Functions/函数的独占时间 (Medium) -# 当函数调用开始时,如果当前有函数正在运行,则当前正在运行函数应当停止,此时计算其的执行时间,然后将调用函数入栈。 -# 当函数调用结束时,将栈顶元素弹出,并计算相应的执行时间,如果此时栈顶有被暂停的函数,则开始运行该函数。 -# 输入:n = 2, logs = ["0:start:0","1:start:2","1:end:5","0:end:6"] 输出:两个函数的独占时间分别为[3,4] -class Solution: - def exclusiveTime(self, n: int, logs: List[str]) -> List[int]: - ans = [0] * n - st = [] - for log in logs: - idx, tp, timestamp = log.split(':') - idx, timestamp = int(idx), int(timestamp) - if tp[0] == 's': - if st: - ans[st[-1][0]] += timestamp - st[-1][1] - st[-1][1] = timestamp - st.append([idx, timestamp]) - else: - i, t = st.pop() - ans[i] += timestamp - t + 1 - if st: - st[-1][1] = timestamp + 1 - return ans -``` - - -```python -#R 921 Minimum Add to Make Parentheses Valid/使括号有效的最少添加 (Medium) -class Solution: - def minAddToMakeValid(self, s: str) -> int: - stk = [] - for c in s: - if c == ')' and stk and stk[-1] == '(': - stk.pop() - else: - stk.append(c) - return len(stk) -``` - -# 单调栈 -https://blog.csdn.net/zy_dreamer/article/details/131036101 -从左到右遍历元素。单调递增栈:栈顶最小。 -- 查找 「比当前元素大的元素」 就用 单调递增栈,查找 「比当前元素小的元素」 就用 单调递减栈。 -- 从 「左侧」 查找就看 「插入栈」 时的栈顶元素,从 「右侧」 查找就看 「弹出栈」 时即将插入的元素。 - -```python -#H 模板,单调递增栈(递减改为小于等于) -def monotoneIncreasingStack(nums): - stack = [] - for num in nums: - while stack and num >= stack[-1]: - stack.pop() - stack.append(num) -``` - - -```python -#R 0 每日温度,观测到更高的气温,至少需要等待的天数 -class Solution: - def dailyTemperatures(self, T: List[int]) -> List[int]: - n = len(T) - stack = [] - ans = [0 for _ in range(n)] - for i in range(n): - while stack and T[i] > T[stack[-1]]: - index = stack.pop() - ans[index] = (i-index) - stack.append(i) - return ans -``` - - -```python -#H 0 接雨水,排列的柱子,下雨之后能接多少雨水。 -# 方法总结:找上一个更大元素,在找的过程中填坑。while中加了等号,这可以让栈中没有重复元素,以节省空间。 https://www.bilibili.com/video/BV1VN411J7S7/?vd_source=3f76269c2962e01f0d61bbeac282e5d2 单调递减栈。 -class Solution: - def trap(self, height: List[int]) -> int: - ans = 0 - st = [] - for i, h in enumerate(height): - while st and h >= height[st[-1]]: - bottom_h = height[st.pop()] - if not st: # len(st) == 0 - break - left = st[-1] - dh = min(height[left], h) - bottom_h # 面积的高 - ans += dh * (i - left - 1) - st.append(i) - return ans -``` - - - -```python -#R 0.下一个更大元素 I, 每一nums1中的x在nums2中对应位置右侧的第一个比 x 大的元素。如果不存在 -1 -class Solution: - def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]: - res = {} - stack = [] - for num in reversed(nums2): - while stack and num >= stack[-1]: - stack.pop() - res[num] = stack[-1] if stack else -1 - stack.append(num) - return [res[num] for num in nums1] -``` - - -```python -#H 0 柱状图中最大的矩形。n个非负整数,用来表示柱状图中各个柱子的高度。求该柱状图中勾勒出来的矩形的最大面积。 -# 在i左侧的小于h的最近元素的下标left,右侧的小于h的最近元素的下标right,矩形的宽度就是right−left−1 -class Solution: - def largestRectangleArea(self, heights: List[int]) -> int: - n, heights, st, ans = len(heights), [0] + heights + [0], [], 0 - for i in range(n + 2): - while st and heights[st[-1]] > heights[i]: - ans = max(ans, heights[st.pop(-1)] * (i - st[-1] - 1)) - st.append(i) - return ans -``` - -```python -#H 85 Maximal Rectangle/最大矩形 (Hard) -class Solution: - def maximalRectangle(self, matrix: List[List[str]]) -> int: - m = len(matrix) - if m == 0: return 0 - n = len(matrix[0]) - heights = [0] * n - ans = 0 - for i in range(m): - for j in range(n): - if matrix[i][j] == "0": - heights[j] = 0 - else: - heights[j] += 1 - ans = max(ans, self.largestRectangleArea(heights)) - return ans -``` - - -```python -#H 315. 计算右侧小于当前元素的个数 困难 -# counts[i] 的值是 nums[i] 右侧小于 nums[i] 的元素的数量。输入数组反过来插入一个有序数组(降序)中,插入的位置就是在原数组中位于它右侧的元素的个数。 -class Solution: - def countSmaller(self, nums: List[int]) -> List[int]: - sortns = [] - res = [] - for n in reversed(nums): - idx = bisect.bisect_left(sortns, n) - res.append(idx) - sortns.insert(idx,n) - return res[::-1] -``` - -```python -#R 找前面比自己小的元素 -def find_smaller_elements(nums): - result = [] - stack = [] # 用于存储元素的值 - for num in nums: - while stack and stack[-1] >= num: - stack.pop() - if not stack: - result.append(None) # 如果前面没有比当前元素小的元素,可以用 None 表示 - else: - result.append(stack[-1]) - stack.append(num) - return result -``` - - -```python -#R 503 Next Greater Element II/下一个更大元素 II (Medium) -class Solution: - def nextGreaterElements(self, nums: List[int]) -> List[int]: - n = len(nums) - ans = [-1] * n - stack = [] - for i in range(n * 2 - 1): - while stack and nums[i % n] > nums[stack[-1]]: - ans[stack.pop()] = nums[i % n] - stack.append(i % n) - return ans -``` - -```python -#R 768 Max Chunks To Make Sorted II/最多能完成排序的块 II (Hard) -# 分割成若干块 ,分别进行排序。之后再连接起来,使得连接的结果和按升序排序后的原数组相同。 -# 从左到右,每个分块都有一个最大值,并且这些分块的最大值呈单调递增(非严格递增)321 65 -class Solution: - def maxChunksToSorted(self, arr: List[int]) -> int: - stk = [] - for v in arr: - if not stk or v >= stk[-1]: - stk.append(v) - else: - mx = stk.pop() - while stk and stk[-1] > v: - stk.pop() - stk.append(mx) - return len(stk) -``` - - - -# 堆 - - -```python -#R 502 IPO (Hard) -# 贪心 + 排序 + 大顶堆:选择当前可启动的最大利润项目 -# 利润profits,启动该项目需要的最小资本capital。最初你的资本为w,选择最多k个项目 -class Solution: - def findMaximizedCapital(self, k: int, w: int, profits: List[int], capital: List[int]) -> int: - # 生成索引序列 并 根据资本值对索引进行升序排序 - n = len(capital) - indexes = sorted( [i for i in range(n)], key=lambda i: capital[i]) - pq = [] # 维护堆内利润值的大顶堆 - i = 0 - while k > 0: - # 将启动资本小于等于当前资本的项目的利润加入大顶堆 - while i < n and capital[indexes[i]] <= w: - heapq.heappush(pq, -profits[indexes[i]]) # 取相反数实现大顶堆 - i += 1 - if not pq: break # 没有可以启动的项目,后面启动资本更大的项目也无法启动,退出 - w += -heappop(pq) # 选择启动资本满足条件的项目中利润最大的那个,更新w - k -= 1 - return w -``` - -```python -#R 快速排序 -def quick_sort(arr, low=0, high=None): - if high is None: - high = len(arr) - 1 - - def partition(arr, low, high): - pivot = arr[high] - i = low - 1 - for j in range(low, high): - # 如果当前元素小于等于基准 - if arr[j] <= pivot: - # 交换元素 - i += 1 - arr[i], arr[j] = arr[j], arr[i] - # 将基准放到正确位置 - arr[i + 1], arr[high] = arr[high], arr[i + 1] - return i + 1 - - def _quick_sort(arr, low, high): - if low < high: - partition_index = partition(arr, low, high) - _quick_sort(arr, low, partition_index - 1) - _quick_sort(arr, partition_index + 1, high) - - _quick_sort(arr, low, high) - return arr -``` - - -```python -#R 堆排序 https://blog.csdn.net/Solititude/article/details/129182217 -def heapify(arr, n, i): - largest = i - left_child = 2 * i + 1 - right_child = 2 * i + 2 - if left_child < n and arr[left_child] > arr[largest]: - largest = left_child - if right_child < n and arr[right_child] > arr[largest]: - largest = right_child - if largest != i: - arr[i], arr[largest] = arr[largest], arr[i] - heapify(arr, n, largest) -def heap_sort(arr): - n = len(arr) - # 构建最大堆 - for i in range(n // 2 - 1, -1, -1): - heapify(arr, n, i) - # 逐步取出堆顶元素,进行堆排序 - for i in range(n - 1, 0, -1): - arr[0], arr[i] = arr[i], arr[0] - heapify(arr, i, 0) -``` - - -```python -#R 709.99 Random Pick with Blacklist/黑名单中的随机数 (Hard) -# 选取一个 未加入 黑名单 blacklist 的整数 -# 构建一个从 [0,n−m) 范围内的黑名单数到 [n−m,n) 的白名单数的映射 -class Solution: - def __init__(self, n: int, blacklist: List[int]): - m = len(blacklist) - self.bound = w = n - m - black = {b for b in blacklist if b >= self.bound} - self.b2w = {} - for b in blacklist: - if b < self.bound: - while w in black: - w += 1 - self.b2w[b] = w - w += 1 - def pick(self) -> int: - x = randrange(self.bound) - return self.b2w.get(x, x) -``` - -# 累加和 - - -```python -#R 862. Shortest Subarray with Sum at Least K -import heapq -def shortestSubarray(nums, k): - # 初始化结果为正无穷大,累加和为0,优先队列用于保存累加和及其对应的下标 - res = float('inf') - sum_val = 0 - pq = [(0, -1)] - for i in range(len(nums)): - # 计算当前位置的累加和 - sum_val += nums[i] - # 检查队列中是否有满足条件的累加和,如果有,更新结果 - while pq and sum_val - pq[0][0] >= k: - res = min(res, i - pq[0][1]) - heapq.heappop(pq) - # 将当前累加和及其下标加入队列 - heapq.heappush(pq, (sum_val, i)) - # 如果结果仍然是正无穷大,说明没有符合条件的子数组 - return -1 if res == float('inf') else res -``` - - -```python -#H 负二进制加法/Adding Two Negabinary Numbers -# 如果 x≥2,那么将 x 减去 2,并向高位进位 −1。即逢 2 进负 1。 -# 如果 x=−1,由于 −(−2)^i=(−2)^i +(−2)^{i+1},所以我们可以将 x 置为 1,并向高位进位 1。 -class Solution: - def addNegabinary(self, arr1: List[int], arr2: List[int]) -> List[int]: - i, j = len(arr1) - 1, len(arr2) - 1 - c = 0 - ans = [] - while i >= 0 or j >= 0 or c: - a = 0 if i < 0 else arr1[i] - b = 0 if j < 0 else arr2[j] - x = a + b + c - c = 0 - if x >= 2: - x -= 2 - c -= 1 - elif x == -1: - x = 1 - c += 1 - ans.append(x) - i, j = i - 1, j - 1 - while len(ans) > 1 and ans[-1] == 0: - ans.pop() - return ans[::-1] -``` - - -```python -#R 二叉树的迭代遍历 -# 前序遍历-迭代-LC144_二叉树的前序遍历 -class Solution: - def preorderTraversal(self, root: TreeNode) -> List[int]: - # 根结点为空则返回空列表 - if not root: - return [] - stack = [root] - result = [] - while stack: - node = stack.pop() - # 中结点先处理 - result.append(node.val) - # 右孩子先入栈 - if node.right: - stack.append(node.right) - # 左孩子后入栈 - if node.left: - stack.append(node.left) - return result -``` - - -```python -#R 中序遍历-迭代-LC94_二叉树的中序遍历 -class Solution: - def inorderTraversal(self, root: TreeNode) -> List[int]: - if not root: - return [] - stack = [] # 不能提前将root结点加入stack中 - result = [] - cur = root - while cur or stack: - # 先迭代访问最底层的左子树结点 - if cur: - stack.append(cur) - cur = cur.left - # 到达最左结点后处理栈顶结点 - else: - cur = stack.pop() - result.append(cur.val) - # 取栈顶元素右结点 - cur = cur.right - return result -``` - - - -```python -#R 102.二叉树的层序遍历 -# 利用长度法 -# Definition for a binary tree node. -# class TreeNode: -# def __init__(self, val=0, left=None, right=None): -# self.val = val -# self.left = left -# self.right = right -class Solution: - def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]: - if not root: - return [] - queue = collections.deque([root]) - result = [] - while queue: - level = [] - for _ in range(len(queue)): - cur = queue.popleft() - level.append(cur.val) - if cur.left: - queue.append(cur.left) - if cur.right: - queue.append(cur.right) - result.append(level) - return result -``` - - - -```python -#R 671. 二叉树中第二小的节点。 -# 给定一个非空特殊的二叉树,每个节点都是正数,并且每个节点的子节点数量只能为 2 或 0。如果一个节点有两个子节点的话,那么该节点的值等于两个子节点中较小的一个。 -class Solution: - def findSecondMinimumValue(self, root: TreeNode) -> int: - if not root or not root.left: - return -1 - # 我们知道root.val是最小值,那么 - # 第二小的值存在于 更小的子节点那一边的子树的第二小的值 或 更大的子节点 之中 - left = root.left.val if root.left.val != root.val else self.findSecondMinimumValue(root.left) - right = root.right.val if root.right.val != root.val else self.findSecondMinimumValue(root.right) - return min(left, right) if left != -1 and right != -1 else max(left, right) -``` - - - -```python -#R 208 前缀树是一种特殊的多叉树,它的 TrieNode 中 chidren 是一个大小为 26 的一维数组,分别对应了26个英文字符 void insert(String word) 向前缀树中插入字符串 word,search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。 startsWith 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。 -class Trie: - def __init__(self): - self.children = [None] * 26 - self.isEnd = False - def searchPrefix(self, prefix: str) -> "Trie": - node = self - for ch in prefix: - ch = ord(ch) - ord("a") - if not node.children[ch]: - return None - node = node.children[ch] - return node - def insert(self, word: str) -> None: - node = self - for ch in word: - ch = ord(ch) - ord("a") - if not node.children[ch]: - node.children[ch] = Trie() - node = node.children[ch] - node.isEnd = True - def search(self, word: str) -> bool: - node = self.searchPrefix(word) - return node is not None and node.isEnd - def startsWith(self, prefix: str) -> bool: - return self.searchPrefix(prefix) is not None -``` - - -```python -#R 1032. Stream of Characters 接收一个字符流,并检查这些字符的后缀是否是字符串数组 words 中的一个字符串。 -class Trie: - def __init__(self): - self.children = [None] * 26 - self.is_end = False - def insert(self, w: str): - node = self - for c in w[::-1]: - idx = ord(c) - ord('a') - if node.children[idx] is None: - node.children[idx] = Trie() - node = node.children[idx] - node.is_end = True - def search(self, w: List[str]) -> bool: - node = self - for c in w[::-1]: - idx = ord(c) - ord('a') - if node.children[idx] is None: - return False - node = node.children[idx] - if node.is_end: - return True - return False -class StreamChecker: - def __init__(self, words: List[str]): - self.trie = Trie() - self.cs = [] - self.limit = 201 - for w in words: - self.trie.insert(w) - def query(self, letter: str) -> bool: - self.cs.append(letter) - return self.trie.search(self.cs[-self.limit:]) -# Your StreamChecker object will be instantiated and called as such: -# obj = StreamChecker(words) -# param_1 = obj.query(letter) -``` - - - - - - -```python -#R 124 Binary Tree Maximum Path Sum/二叉树中的最大路径和 (Hard) -# 输入:root = [1,2,3], 最优路径是 2 -> 1 -> 3 -# 链:从下面的某个节点(不一定是叶子)到当前节点的路径。把这条链的节点值之和,作为 dfs 的返回值。如果节点值之和是负数,则返回 0。 -# 直径:等价于由两条(或者一条)链拼成的路径。我们枚举每个 node,假设直径在这里「拐弯」,也就是计算由左右两条从下面的某个节点(不一定是叶子)到 node 的链的节点值之和,去更新答案的最大值。 -# dfs 返回的是链的节点值之和,不是直径的节点值之和。 -class Solution: - def maxPathSum(self, root: Optional[TreeNode]) -> int: - ans = -inf - def dfs(node: Optional[TreeNode]) -> int: - if node is None: - return 0 # 没有节点,和为 0 - l_val = dfs(node.left) # 左子树最大链和 - r_val = dfs(node.right) # 右子树最大链和 - nonlocal ans - ans = max(ans, l_val + r_val + node.val) # 两条链拼成路径 - return max(max(l_val, r_val) + node.val, 0) # 当前子树最大链和(注意这里和 0 取最大值了) - dfs(root) - return ans -``` - -```python -#R 297 Serialize and Deserialize Binary Tree/二叉树的序列化与反序列化 (Medium) -# 序列化 使用层序遍历实现。反序列化通过递推公式反推各节点在序列中的索引 -class Codec: - def serialize(self, root): - if not root: return "[]" - queue = collections.deque() - queue.append(root) - res = [] - while queue: - node = queue.popleft() - if node: - res.append(str(node.val)) - queue.append(node.left) - queue.append(node.right) - else: res.append("null") - return '[' + ','.join(res) + ']' - - def deserialize(self, data): - if data == "[]": return - vals, i = data[1:-1].split(','), 1 - root = TreeNode(int(vals[0])) - queue = collections.deque() - queue.append(root) - while queue: - node = queue.popleft() - if vals[i] != "null": - node.left = TreeNode(int(vals[i])) - queue.append(node.left) - i += 1 - if vals[i] != "null": - node.right = TreeNode(int(vals[i])) - queue.append(node.right) - i += 1 - return root -``` - -```python -#R 366 Find Leaves of Binary Tree $/寻找二叉树的叶子节点 (Medium) -# 收集所有的叶子节点;移除所有的叶子节点;重复以上步骤,直到树为空。 高度代表倒数第几个叶子节点 -class Solution: - def findLeaves(self, root: TreeNode) -> List[List[int]]: - # 自底向上递归 - def dfs(root): - if not root:return 0 - l,r=dfs(root.left),dfs(root.right) - depth=max(l,r)+1 - res[depth].append(root.val) - return depth - - res=collections.defaultdict(list) - dfs(root) - return [v for v in res.values()] -``` - -```python -#R 652 Find Duplicate Subtrees/寻找重复的子树 (Medium) -# 递归的方法进行序列化 -class Solution: - def findDuplicateSubtrees(self, root: Optional[TreeNode]) -> List[Optional[TreeNode]]: - def dfs(node: Optional[TreeNode]) -> str: - if not node: - return "" - serial = "".join([str(node.val), "(", dfs(node.left), ")(", dfs(node.right), ")"]) - if (tree := seen.get(serial, None)): - repeat.add(tree) - else: - seen[serial] = node - return serial - seen = dict() - repeat = set() - dfs(root) - return list(repeat) -``` - -```python -#R 0 My Calendar II/我的日程安排表 II (Medium) -# 如果要添加的时间内不会导致三重预订时,则可以存储这个新的日程安排。 -class MyCalendarTwo: - def __init__(self): - self.booked = [] - self.overlaps = [] - def book(self, start: int, end: int) -> bool: - if any(s < end and start < e for s, e in self.overlaps): - return False - # 注意两个区间不相交的补=s < end and start < e - for s, e in self.booked: - if s < end and start < e: - self.overlaps.append((max(s, start), min(e, end))) - self.booked.append((start, end)) - return True -``` - - -```python -#R 987 Vertical Order Traversal of a Binary Tree/二叉树的垂序遍历 (Medium) -class Solution: - def verticalTraversal(self, root: Optional[TreeNode]) -> List[List[int]]: - groups = defaultdict(list) - def dfs(node, row, col): #二叉树先序遍历 - if node is None: - return - groups[col].append((row, node.val)) # col 相同的分到同一组 - dfs(node.left, row + 1, col - 1) - dfs(node.right, row + 1, col + 1) - - dfs(root, 0, 0) - ans = [] - for _, g in sorted(groups.items()): - g.sort() # 按照 row 排序,row 相同按照 val 排序 - ans.append([val for _, val in g]) - return ans -``` - - -# 回溯算法 - -组合 - - -```python -#R 216.组合总和III -# [1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合 -class Solution: - def combinationSum3(self, k: int, n: int) -> List[List[int]]: - result = [] # 存放结果集 - self.backtracking(n, k, 0, 1, [], result) - return result - def backtracking(self, targetSum, k, currentSum, startIndex, path, result): - if currentSum > targetSum: # 剪枝操作 - return # 如果path的长度等于k但currentSum不等于targetSum,则直接返回 - if len(path) == k: - if currentSum == targetSum: - result.append(path[:]) - return - for i in range(startIndex, 9 - (k - len(path)) + 2): # 剪枝 - currentSum += i # 处理 - path.append(i) # 处理 - self.backtracking(targetSum, k, currentSum, i + 1, path, result) # 注意i+1调整startIndex - currentSum -= i # 回溯 - path.pop() # 回溯 -``` - - - -```python -#R 40.组合总和II -# 数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的每个数字在每个组合中只能使用一次。 -class Solution: - def backtracking(self, candidates, target, total, startIndex, used, path, result): - if total == target: - result.append(path[:]) - return - for i in range(startIndex, len(candidates)): - # 对于相同的数字,只选择第一个未被使用的数字,跳过其他相同数字 - if i > startIndex and candidates[i] == candidates[i - 1] and not used[i - 1]: - continue - if total + candidates[i] > target: - break - total += candidates[i] - path.append(candidates[i]) - used[i] = True - self.backtracking(candidates, target, total, i + 1, used, path, result) - used[i] = False - total -= candidates[i] - path.pop() - def combinationSum2(self, candidates, target): - used = [False] * len(candidates) - result = [] - candidates.sort() - self.backtracking(candidates, target, 0, 0, used, [], result) - return result -``` - - -分割 - - - -```python -#R 131.分割回文串 -# 将 s 分割成一些子串,使每个子串都是回文串 -class Solution: - def partition(self, s: str) -> List[List[str]]: - # 递归用于纵向遍历; for循环用于横向遍历; 当切割线迭代至字符串末尾,说明找到一种方法; 类似组合问题,为了不重复切割同一位置,需要start_index来做标记下一轮递归的起始位置(切割线) - result = [] - self.backtracking(s, 0, [], result) - return result - def backtracking(self, s, start_index, path, result ): - # Base Case - if start_index == len(s): - result.append(path[:]) - return - # 单层递归逻辑 - for i in range(start_index, len(s)): - # 此次比其他组合题目多了一步判断: - # 判断被截取的这一段子串([start_index, i])是否为回文串 - if self.is_palindrome(s, start_index, i): - path.append(s[start_index:i+1]) - self.backtracking(s, i+1, path, result) # 递归纵向遍历:从下一处进行切割,判断其余是否仍为回文串 - path.pop() # 回溯 - def is_palindrome(self, s: str, start: int, end: int) -> bool: - i: int = start - j: int = end - while i < j: - if s[i] != s[j]: - return False - i += 1 - j -= 1 - return True -``` - - -```python -#R 93.复原IP地址 -class Solution: - def restoreIpAddresses(self, s: str) -> List[str]: - result = [] - self.backtracking(s, 0, 0, "", result) - return result - def backtracking(self, s, start_index, point_num, current, result): - if point_num == 3: # 逗点数量为3时,分隔结束 - if self.is_valid(s, start_index, len(s) - 1): # 判断第四段子字符串是否合法 - current += s[start_index:] # 添加最后一段子字符串 - result.append(current) - return - for i in range(start_index, len(s)): - if self.is_valid(s, start_index, i): # 判断 [start_index, i] 这个区间的子串是否合法 - sub = s[start_index:i + 1] - self.backtracking(s, i + 1, point_num + 1, current + sub + '.', result) - else: - break - def is_valid(self, s, start, end): - if start > end: - return False - if s[start] == '0' and start != end: # 0开头的数字不合法 - return False - num = 0 - for i in range(start, end + 1): - if not s[i].isdigit(): # 遇到非数字字符不合法 - return False - num = num * 10 + int(s[i]) - if num > 255: # 如果大于255了不合法 - return False - return True -``` - -子集 - - -```python -#R 90.子集II -# 可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。 解集不能包含重复的子集。 -class Solution: - def subsetsWithDup(self, nums): - result = [] - path = [] - used = [False] * len(nums) - nums.sort() # 去重需要排序 - self.backtracking(nums, 0, used, path, result) - return result - def backtracking(self, nums, startIndex, used, path, result): - result.append(path[:]) # 收集子集 - for i in range(startIndex, len(nums)): - # used[i - 1] == True,说明同一树枝 nums[i - 1] 使用过 - # used[i - 1] == False,说明同一树层 nums[i - 1] 使用过 - # 而我们要对同一树层使用过的元素进行跳过 - if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]: - continue - path.append(nums[i]) - used[i] = True - self.backtracking(nums, i + 1, used, path, result) - used[i] = False - path.pop() -``` - -```python -#R 491.递增子序列 -# 数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。 利用set去重 -class Solution: - def findSubsequences(self, nums): - result = [] - path = [] - self.backtracking(nums, 0, path, result) - return result - def backtracking(self, nums, startIndex, path, result): - if len(path) > 1: - result.append(path[:]) # 注意要使用切片将当前路径的副本加入结果集 - # 注意这里不要加return,要取树上的节点 - - uset = set() # 使用集合对本层元素进行去重 - for i in range(startIndex, len(nums)): - if (path and nums[i] < path[-1]) or nums[i] in uset: - continue - - uset.add(nums[i]) # 记录这个元素在本层用过了,本层后面不能再用了 - path.append(nums[i]) - self.backtracking(nums, i + 1, path, result) - path.pop() -``` - -排列 - - -```python -#R 47.全排列 II -# 可包含重复数字的序列 ,返回所有不重复的全排列 -class Solution: - def permuteUnique(self, nums): - nums.sort() # 排序 - result = [] - self.backtracking(nums, [], [False] * len(nums), result) - return result - def backtracking(self, nums, path, used, result): - if len(path) == len(nums): - result.append(path[:]) - return - for i in range(len(nums)): - if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]: - continue - used[i] = True - path.append(nums[i]) - self.backtracking(nums, path, used, result) - path.pop() - used[i] = False -``` - - -棋盘 - -```python -#R 51. N皇后 -class Solution: - def solveNQueens(self, n: int) -> List[List[str]]: - result = [] # 存储最终结果的二维字符串数组 - chessboard = ['.' * n for _ in range(n)] # 初始化棋盘 - self.backtracking(n, 0, chessboard, result) # 回溯求解 - return [[''.join(row) for row in solution] for solution in result] # 返回结果集 - def backtracking(self, n: int, row: int, chessboard: List[str], result: List[List[str]]) -> None: - if row == n: - result.append(chessboard[:]) # 棋盘填满,将当前解加入结果集 - return - for col in range(n): - if self.isValid(row, col, chessboard): - chessboard[row] = chessboard[row][:col] + 'Q' + chessboard[row][col+1:] # 放置皇后 - self.backtracking(n, row + 1, chessboard, result) # 递归到下一行 - chessboard[row] = chessboard[row][:col] + '.' + chessboard[row][col+1:] # 回溯,撤销当前位置的皇后 - def isValid(self, row: int, col: int, chessboard: List[str]) -> bool: - # 检查列 - for i in range(row): - if chessboard[i][col] == 'Q': - return False # 当前列已经存在皇后,不合法 - # 检查 45 度角是否有皇后 - i, j = row - 1, col - 1 - while i >= 0 and j >= 0: - if chessboard[i][j] == 'Q': - return False # 左上方向已经存在皇后,不合法 - i -= 1 - j -= 1 - # 检查 135 度角是否有皇后 - i, j = row - 1, col + 1 - while i >= 0 and j < len(chessboard): - if chessboard[i][j] == 'Q': - return False # 右上方向已经存在皇后,不合法 - i -= 1 - j += 1 - return True # 当前位置合法 -``` - - -```python -#R 37. 解数独 -class Solution: - def solveSudoku(self, board: List[List[str]]) -> None: - """ - Do not return anything, modify board in-place instead. - """ - self.backtracking(board) - def backtracking(self, board: List[List[str]]) -> bool: - # 若有解,返回True;若无解,返回False - for i in range(len(board)): # 遍历行 - for j in range(len(board[0])): # 遍历列 - # 若空格内已有数字,跳过 - if board[i][j] != '.': continue - for k in range(1, 10): - if self.is_valid(i, j, k, board): - board[i][j] = str(k) - if self.backtracking(board): return True - board[i][j] = '.' - # 若数字1-9都不能成功填入空格,返回False无解 - return False - return True # 有解 - def is_valid(self, row: int, col: int, val: int, board: List[List[str]]) -> bool: - # 判断同一行是否冲突 - for i in range(9): - if board[row][i] == str(val): - return False - # 判断同一列是否冲突 - for j in range(9): - if board[j][col] == str(val): - return False - # 判断同一九宫格是否有冲突 - start_row = (row // 3) * 3 - start_col = (col // 3) * 3 - for i in range(start_row, start_row + 3): - for j in range(start_col, start_col + 3): - if board[i][j] == str(val): - return False - return True -``` - -其他 - - -```python -#R 282 Expression Add Operators/给表达式添加运算符 (Hard) -# 输入: num = "123", target = 6 输出: ["1+2+3", "1*2*3"] -# 每个字符与字符实际上有四种连接方式,加减乘和拼接 -class Solution: - def addOperators(self, num: str, target: int) -> List[str]: - def backtrace(idx: int, cursum: int, preadd: int) -> None: - nonlocal res - nonlocal path - if idx == n: - if cursum == target: - res.append(path[:]) - return - pn = len(path) - for i in range(idx, n): - x_str = num[idx: i + 1] - x = int(x_str) - if idx == 0: - path += x_str - backtrace(i + 1, cursum + x, x) - path = path[ :pn] - else: - path += '+' + x_str - backtrace(i + 1, cursum + x, x) - path = path[ :pn] - path += '-' + x_str - backtrace(i + 1, cursum - x, -x) - path = path[ :pn] - path += '*' + x_str - backtrace(i + 1, cursum - preadd + preadd * x, preadd * x) - path = path[ :pn] - if x == 0: - return - n = len(num) - res = [] - path = "" - backtrace(0, 0, 0) - return res -``` - -```python -#R 698 Partition to K Equal Sum Subsets/划分为k个相等的子集 (Medium) -class Solution: - def canPartitionKSubsets(self, nums: List[int], k: int) -> bool: - def dfs(i): - if i == len(nums): - return True - for j in range(k): - if j and cur[j] == cur[j - 1]: - continue - cur[j] += nums[i] - if cur[j] <= s and dfs(i + 1): - return True - cur[j] -= nums[i] - return False - s, mod = divmod(sum(nums), k) - if mod: - return False - cur = [0] * k - nums.sort(reverse=True) - return dfs(0) -``` - - -# 图Visited - - -```python -#R Most Stones Removed with Same Row or Column/移除最多的同行或同列石头(Medium) -# 石头放在整数坐标点上, move操作移除某一块石头共享一列或一行的一块石头,最多能执行多少次 move -class Solution: - def removeStones(self, stones: List[List[int]]) -> int: - # 构建图 - graph = collections.defaultdict(list) - for i, (x, y) in enumerate(stones): - for j, (xx, yy) in enumerate(stones): - if x == xx or y == yy: - graph[i].append(j) - # DFS计算连通分量数量 - def dfs(node): - visited.add(node) - for neighbor in graph[node]: - if neighbor not in visited: - dfs(neighbor) - n = len(stones) - visited = set() - components = 0 - for i in range(n): - if i not in visited: - components += 1 - dfs(i) - return n - components -``` - - - -```python -#R 200. Number of Islands 给定一个由 '1'(陆地)和 '0'(水)组成的二维网格,计算岛屿的数量。岛屿是由相邻的陆地水平或垂直连接形成的(不包括对角线)。你可以假设网格的四个边都被水包围。 -class Solution: - def numIslands(self, grid: List[List[str]]) -> int: - if not grid or not grid[0]: - return 0 - rows, cols = len(grid), len(grid[0]) - islands = 0 - def dfs(row, col): - if 0 <= row < rows and 0 <= col < cols and grid[row][col] == '1': - grid[row][col] = '0' # 标记为已访问 - # 递归搜索相邻的陆地 - dfs(row - 1, col) - dfs(row + 1, col) - dfs(row, col - 1) - dfs(row, col + 1) - for row in range(rows): - for col in range(cols): - if grid[row][col] == '1': - islands += 1 - dfs(row, col) - return islands -``` - - -```python -#R (hard) 单词接龙,从单词 beginWord 和 endWord 的转换序列每次转换只能改变一个字母,wordList = ["hot","dot","dog"] -class Solution: - def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int: - wordSet = set(wordList) - if len(wordSet)== 0 or endWord not in wordSet: - return 0 - mapping = {beginWord:1} - queue = deque([beginWord]) - while queue: - word = queue.popleft() - path = mapping[word] - for i in range(len(word)): - word_list = list(word) - for j in range(26): - word_list[i] = chr(ord('a')+j) - newWord = "".join(word_list) - if newWord == endWord: - return path+1 - if newWord in wordSet and newWord not in mapping: - mapping[newWord] = path+1 - queue.append(newWord) - return 0 -``` - - -```python -#R 463. 岛屿的周长 -class Solution: - def islandPerimeter(self, grid: List[List[int]]) -> int: - m = len(grid) - n = len(grid[0]) - # 创建res二维素组记录答案 - res = [[0] * n for j in range(m)] - for i in range(m): - for j in range(len(grid[i])): - # 如果当前位置为水域,不做修改或reset res[i][j] = 0 - if grid[i][j] == 0: - res[i][j] = 0 - # 如果当前位置为陆地,往四个方向判断,update res[i][j] - elif grid[i][j] == 1: - if i == 0 or (i > 0 and grid[i-1][j] == 0): - res[i][j] += 1 - if j == 0 or (j >0 and grid[i][j-1] == 0): - res[i][j] += 1 - if i == m-1 or (i < m-1 and grid[i+1][j] == 0): - res[i][j] += 1 - if j == n-1 or (j < n-1 and grid[i][j+1] == 0): - res[i][j] += 1 - # 最后求和res矩阵,这里其实不一定需要矩阵记录,可以设置一个variable res 记录边长,舍矩阵无非是更加形象而已 - ans = sum([sum(row) for row in res]) - return ans -``` - - -```python -#R 1091. Shortest Path in Binary Matrix/二进制矩阵中的最短路径(Medium) -class Solution: - def shortestPathBinaryMatrix(self, grid: List[List[int]]) -> int: - if grid[0][0]: - return -1 - n = len(grid) - grid[0][0] = 1 - q = deque([(0, 0)]) - ans = 1 - while q: - for _ in range(len(q)): - i, j = q.popleft() - if i == j == n - 1: - return ans - for x in range(i - 1, i + 2): - for y in range(j - 1, j + 2): - if 0 <= x < n and 0 <= y < n and grid[x][y] == 0: - grid[x][y] = 1 - q.append((x, y)) - ans += 1 - return -1 -``` - -```python -#R 210 Course Schedule II/课程表 II (Medium) -# 返回你为了学完所有课程所安排的学习顺序,indeg 存储每个节点的入度 -class Solution: - def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]: - g = defaultdict(list) - indeg = [0] * numCourses - for a, b in prerequisites: - g[b].append(a) - indeg[a] += 1 - ans = [] - q = deque(i for i, x in enumerate(indeg) if x == 0) - while q: - i = q.popleft() - ans.append(i) - for j in g[i]: - indeg[j] -= 1 - if indeg[j] == 0: - q.append(j) - return ans if len(ans) == numCourses else [] -``` - -```python -#R 329 Longest Increasing Path in a Matrix/矩阵中的最长递增路径 (Medium) -class Solution: - def longestIncreasingPath(self, matrix: List[List[int]]) -> int: - m, n = len(matrix), len(matrix[0]) - flag = [[-1] * n for _ in range(m)] #存储从(i,j)出发的最长递归路径 - - def dfs(i, j): - if flag[i][j] != -1: # 记忆化搜索,避免重复的计算 - return flag[i][j] - else: - d = 1 - for (x, y) in [[-1, 0], [1, 0], [0, 1], [0, -1]]: - x, y = i + x, j + y - if 0 <= x < m and 0 <= y < n and matrix[x][y] > matrix[i][j]: - d = max(d, dfs(x, y) + 1) # 取四个邻接点的最长 - flag[i][j] = d - return d - - res = 0 - for i in range(m): # 遍历矩阵计算最长路径 - for j in range(n): - if flag[i][j] == -1: - res = max(res, dfs(i, j)) - return res -``` - -```python -#R 743 Network Delay Time/网络延迟时间 (Medium) -# 从某个节点 K 发出一个信号。需要多久才能使所有节点都收到信号 Dijkstra 算法 -class Solution: - def networkDelayTime(self, times: List[List[int]], n: int, k: int) -> int: - g = [[float('inf')] * n for _ in range(n)] - for x, y, time in times: - g[x - 1][y - 1] = time - dist = [float('inf')] * n - dist[k - 1] = 0 - used = [False] * n - for _ in range(n): - x = -1 - for y, u in enumerate(used): - if not u and (x == -1 or dist[y] < dist[x]): - x = y - used[x] = True - for y, time in enumerate(g[x]): - dist[y] = min(dist[y], dist[x] + time) - ans = max(dist) - return ans if ans < float('inf') else -1 -``` - -```python -#R 827 Making A Large Island/最大人工岛 (Hard) -# 最多 只能将一格 0 变成 1 -class Solution: - def largestIsland(self, grid: List[List[int]]) -> int: - n = len(grid) - def dfs(i: int, j: int) -> int: - size = 1 - grid[i][j] = len(area) + 2 # 记录 (i,j) 属于哪个岛 - for x, y in (i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1): - if 0 <= x < n and 0 <= y < n and grid[x][y] == 1: - size += dfs(x, y) - return size - # DFS 每个岛,统计各个岛的面积,记录到 area 列表中 - area = [] - for i, row in enumerate(grid): - for j, x in enumerate(row): - if x == 1: - area.append(dfs(i, j)) - # 加上这个特判,可以快很多 - if not area: # 没有岛 - return 1 - ans = 0 - for i, row in enumerate(grid): - for j, x in enumerate(row): - if x: continue - s = set() - for x, y in (i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1): - if 0 <= x < n and 0 <= y < n and grid[x][y]: - s.add(grid[x][y]) # 记录上下左右格子所属岛屿编号 - ans = max(ans, sum(area[idx - 2] for idx in s) + 1) # 累加面积 - return ans if ans else n * n # 如果最后 ans 仍然为 0,说明所有格子都是 1,返回 n^2 -``` - - -```python -#R 0 Get Watched Videos by Your Friends/获取你好友已观看的视频 (Medium) -# watchedVideos[i] 和 friends[i] 分别表示 id = i 的人观看过的视频列表和他的好友列表。找出所有指定 level 的视频 -class Solution: - def watchedVideosByFriends(self, watchedVideos, friends, id, level): - n = len(friends) - used = [False] * n - q = collections.deque([id]) - used[id] = True - for _ in range(level): - span = len(q) - for i in range(span): - u = q.popleft() - for v in friends[u]: - if not used[v]: - q.append(v) - used[v] = True - freq = collections.Counter() - for _ in range(len(q)): - u = q.pop() - for watched in watchedVideos[u]: - freq[watched] += 1 - videos = list(freq.items()) - videos.sort(key=lambda x: (x[1], x[0])) - ans = [video[0] for video in videos] - return ans -``` - -```python -#R 1761 Minimum Degree of a Connected Trio in a Graph/一个图中连通三元组的最小度数 (困难) -# 连通三元组的度数 是所有满足此条件的边的数目:一个顶点在这个三元组内,而另一个顶点不在这个三元组内。返回所有连通三元组中度数的 最小值 -class Solution: - def minTrioDegree(self, n: int, edges: List[List[int]]) -> int: - g = [[False] * n for _ in range(n)] - deg = [0] * n - for u, v in edges: - u, v = u - 1, v - 1 - g[u][v] = g[v][u] = True - deg[u] += 1 - deg[v] += 1 - ans = inf - for i in range(n): - for j in range(i + 1, n): - if g[i][j]: - for k in range(j + 1, n): - if g[i][k] and g[j][k]: - ans = min(ans, deg[i] + deg[j] + deg[k] - 6) - return -1 if ans == inf else ans -``` - - -# 动态规划 - -简单 - - -```python -#R 背包问题 -def test_2_ei_bag_problem1(weight, value, bagweight): - # 二维数组 - dp = [[0] * (bagweight + 1) for _ in range(len(weight))] - # 初始化 - for j in range(weight[0], bagweight + 1): - dp[0][j] = value[0] - # weight数组的大小就是物品个数 - for i in range(1, len(weight)): # 遍历物品 - for j in range(bagweight + 1): # 遍历背包容量 - if j < weight[i]: - dp[i][j] = dp[i - 1][j] - else: - dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]) - return dp[len(weight) - 1][bagweight] -``` - - - -```python -#R 零钱兑换 计算可以凑成总金额所需的最少的硬币个数。 -class Solution: - def coinChange(self, coins: List[int], amount: int) -> int: - n = len(coins) - dp = [[amount+1] * (amount+1) for _ in range(n+1)] # 初始化为一个较大的值,如 +inf 或 amount+1 - # 合法的初始化 - dp[0][0] = 0 # 其他 dp[0][j]均不合法 - # 完全背包:优化后的状态转移 - for i in range(1, n+1): # 第一层循环:遍历硬币 - for j in range(amount+1): # 第二层循环:遍历背包 - if j < coins[i-1]: # 容量有限,无法选择第i种硬币 - dp[i][j] = dp[i-1][j] - else: # 可选择第i种硬币 - dp[i][j] = min( dp[i-1][j], dp[i][j-coins[i-1]] + 1 ) - ans = dp[n][amount] - return ans if ans != amount+1 else -1 -``` - -```python -#R 1. 买卖股票的最佳时机 -class Solution: - def maxProfit(self, prices: List[int]) -> int: - length = len(prices) - if len == 0: - return 0 - dp = [[0] * 2 for _ in range(length)] - dp[0][0] = -prices[0] - dp[0][1] = 0 - for i in range(1, length): - dp[i][0] = max(dp[i-1][0], -prices[i]) - dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0]) - return dp[-1][1] -``` - -```python -#R 122.买卖股票的最佳时机II -# 可以尽可能地完成更多的交易,不能同时参与多笔交易 -class Solution: - def maxProfit(self, prices: List[int]) -> int: - length = len(prices) - dp = [[0] * 2 for _ in range(length)] - dp[0][0] = -prices[0] - dp[0][1] = 0 - for i in range(1, length): - dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]) #注意这里是和121. 买卖股票的最佳时机唯一不同的地方 - dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i]) - return dp[-1][1] -``` - -```python -#R 0 买卖股票的最佳时机含手续费 -class Solution: - def maxProfit(self, prices: List[int], fee: int) -> int: - n = len(prices) - dp = [[0] * 2 for _ in range(n)] - dp[0][0] = -prices[0] #持股票 - for i in range(1, n): - dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]) - dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee) - return max(dp[-1][0], dp[-1][1]) -``` - -```python -#R 123.买卖股票的最佳时机III 最多可以完成 两笔 交易。 -# 0 没有操作 (其实我们也可以不设置这个状态); 1 第一次持有股票; 2 第一次不持有股票 -class Solution: - def maxProfit(self, prices: List[int]) -> int: - if len(prices) == 0: - return 0 - dp = [[0] * 5 for _ in range(len(prices))] - dp[0][1] = -prices[0] - dp[0][3] = -prices[0] - for i in range(1, len(prices)): - dp[i][0] = dp[i-1][0] - dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i]) - dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i]) - dp[i][3] = max(dp[i-1][3], dp[i-1][2] - prices[i]) - dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i]) - return dp[-1][4] -``` - -```python -#R 188.买卖股票的最佳时机IV -最多可以完成 k 笔交易 -class Solution: - def maxProfit(self, k: int, prices: List[int]) -> int: - if len(prices) == 0: - return 0 - dp = [[0] * (2*k+1) for _ in range(len(prices))] - for j in range(1, 2*k, 2): - dp[0][j] = -prices[0] - for i in range(1, len(prices)): - for j in range(0, 2*k-1, 2): - dp[i][j+1] = max(dp[i-1][j+1], dp[i-1][j] - prices[i]) - dp[i][j+2] = max(dp[i-1][j+2], dp[i-1][j+1] + prices[i]) - return dp[-1][2*k] -``` - -```python -#R 1. 股票最佳买卖股票时机含冷冻期 -class Solution: - def maxProfit(self, prices: List[int]) -> int: - if not prices: - return 0 - n = len(prices) - # f[i][0]: 手上持有股票的最大收益 - # f[i][1]: 手上不持有股票,并且处于冷冻期中的累计最大收益 - # f[i][2]: 手上不持有股票,并且不在冷冻期中的累计最大收益 - f = [[-prices[0], 0, 0]] + [[0] * 3 for _ in range(n - 1)] - for i in range(1, n): - f[i][0] = max(f[i - 1][0], f[i - 1][2] - prices[i]) - f[i][1] = f[i - 1][0] + prices[i] - f[i][2] = max(f[i - 1][1], f[i - 1][2]) - return max(f[n - 1][1], f[n - 1][2]) -``` - - -子序列系列 - -```python -#R 0 不同的子序列 -# s 的子序列中 t 出现的个数 -class Solution: - def numDistinct(self, s: str, t: str) -> int: - dp = [[0] * (len(t)+1) for _ in range(len(s)+1)] - for i in range(len(s)): - dp[i][0] = 1 - for j in range(1, len(t)): - dp[0][j] = 0 - for i in range(1, len(s)+1): - for j in range(1, len(t)+1): - if s[i-1] == t[j-1]: - dp[i][j] = dp[i-1][j-1] + dp[i-1][j] - else: - dp[i][j] = dp[i-1][j] - return dp[-1][-1] -``` - -```python -#R 0 最长回文子序列 -class Solution: - def longestPalindromeSubseq(self, s: str) -> int: - dp = [[0] * len(s) for _ in range(len(s))] - for i in range(len(s)): - dp[i][i] = 1 - for i in range(len(s)-1, -1, -1): - for j in range(i+1, len(s)): - if s[i] == s[j]: - dp[i][j] = dp[i+1][j-1] + 2 - else: - dp[i][j] = max(dp[i+1][j], dp[i][j-1]) - return dp[0][-1] -``` - - - - -```python -#R 33.9 Wildcard Matching/通配符匹配 (Hard) -# '?' 可以匹配任何单个字符。'*' 可以匹配任意字符序列(包括空字符序列)。 -class Solution: - def isMatch(self, s: str, p: str) -> bool: - m, n = len(s), len(p) - f = [[False] * (n + 1) for _ in range(m + 1)] - # 初始条件:翻译自递归边界 - # 对应边界 i<0 and j < 0 return True - f[0][0] = True - # 对应边界 i<0 j>=0的处理 - for j in range(n): - f[0][j + 1] = p[j] == '*' and f[0][j] - # 对应边界 j<0 (f初始化已经赋值了False, 不用写) - for i in range(m): - for j in range(n): - if s[i] == p[j] or p[j] == '?': - f[i + 1][j + 1] = f[i][j] - elif p[j] == '*': - f[i + 1][j + 1] = f[i][j + 1] or f[i + 1][j] - return f[m][n] -``` - -```python -#R 91 Decode Ways/解码方法 (Medium) -# "12" 可以解码为 "AB"(1 2)或者 "L"(12) 时间复杂度O(n),空间复杂度O(n) -class Solution: - def numDecodings(self, s: str) -> int: - size = len(s) - #特判 - if size == 0: - return 0 - dp = [0]*(size+1) - dp[0] = 1 - for i in range(1,size+1): - t = int(s[i-1]) - if t>=1 and t<=9: - dp[i] += dp[i-1] #最后一个数字解密成一个字母 - if i >=2:#下面这种情况至少要有两个字符 - t = int(s[i-2])*10 + int(s[i-1]) - if t>=10 and t<=26: - dp[i] += dp[i-2]#最后两个数字解密成一个一个字母 - return dp[-1] -``` - -```python -#R 311.66 Burst Balloons/戳气球 (Medium) -# nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [] -# 定义 f[i][j] 表示戳破区间 [i,j] 内的所有气球能得到的最多硬币数 -class Solution: - def maxCoins(self, nums: List[int]) -> int: - n = len(nums) - arr = [1] + nums + [1] - f = [[0] * (n + 2) for _ in range(n + 2)] - for i in range(n - 1, -1, -1): - for j in range(i + 2, n + 2): - for k in range(i + 1, j): - f[i][j] = max(f[i][j], f[i][k] + f[k][j] + arr[i] * arr[k] * arr[j]) - return f[0][-1] -``` - -```python -#R 377 Combination Sum IV/组合总和 Ⅳ (Medium) -# 与39题不同之处,顺序不同的序列被视作不同的组合。 -class Solution(object): - def combinationSum4(self, nums, target): - dp = [0] * (target + 1) - dp[0] = 1 - res = 0 - for i in range(target + 1): - for num in nums: - if i >= num: - dp[i] += dp[i - num] - return dp[target] -``` - -```python -#H 0 Arithmetic Slices II - Subsequence/等差数列划分 II - 子序列 (Hard) -# 所有等差子序列的数目 dp_ik=\sum_j^i-1 (dp_jk+1) 第一维用哈希表提高查询效率、节省空间 -class Solution: - def numberOfArithmeticSlices(self, nums: List[int]) -> int: - n,ans=len(nums),0 - dp=[defaultdict(int) for _ in range(n)] - for i,num in enumerate(nums): - for j in range(i): - k=num-nums[j] - dp[i][k]+=dp[j][k]+1 - ans+=dp[j][k] - return ans -``` - -```python -#H 0 Longest Arithmetic Subsequence/最长等差数列 (Medium) -# 以 a[i] 结尾的最长等差子序列公差及其长度,存到一个哈希表dp(i)={d:L} -class Solution: - def longestArithSeqLength(self, a: List[int]) -> int: - f = [{} for _ in range(len(a))] - for i, x in enumerate(a): - for j in range(i - 1, -1, -1): - d = x - a[j] # 公差 - if d not in f[i]: - f[i][d] = f[j].get(d, 1) + 1 - return max(max(d.values()) for d in f[1:]) -``` - -```python -#H 873 Length of Longest Fibonacci Subsequence/最长的斐波那契子序列的长度 (Medium) -# 这f[x][y]代表了以数字x和y结尾的最大斐波那契序列长度。f[x][y]=f[y−x][x]+1 由于数据范围很大,用哈希表嵌套哈希表实现。 -class Solution: - def lenLongestFibSubseq(self, A: List[int]) -> int: - - dp = {} - res = 0 - tempA = set(A) - for i in range(1,len(A)): - for j in range(i): - diff = A[i]-A[j] - if diff int: - if not s: - return 0 - dp = {} # 记录以某个字符结尾的最长连续子串长度 - max_len = 0 # 当前连续子串长度 - for i in range(len(s)): - if i > 0 and (ord(s[i]) - ord(s[i-1]) == 1 or (s[i-1] == 'z' and s[i] == 'a')): - max_len += 1 - else: - max_len = 1 - dp[s[i]] = max(dp.get(s[i], 0), max_len) - return sum(dp.values()) -``` - -```python -#R 688 Knight Probability in Chessboard/骑士在棋盘上的概率 (Medium) -# dp[step][i][j]= 1/8 sum_di,dj dp[step−1][i+di][j+dj] -class Solution: - def knightProbability(self, n: int, k: int, row: int, column: int) -> float: - dp = [[[0] * n for _ in range(n)] for _ in range(k + 1)] - for step in range(k + 1): - for i in range(n): - for j in range(n): - if step == 0: - dp[step][i][j] = 1 - else: - for di, dj in ((-2, -1), (-2, 1), (2, -1), (2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2)): - ni, nj = i + di, j + dj - if 0 <= ni < n and 0 <= nj < n: - dp[step][i][j] += dp[step - 1][ni][nj] / 8 - return dp[k][row][column] -``` - -```python -#R 877 Stone Game/石子游戏 (Medium) -class Solution: - def stoneGame(self, piles: List[int]) -> bool: - N = len(piles) - f = [[0]*(N+1) for _ in range(N+1)] # 防止出界 - for l in range(N): - for i in range(N-l): - j = i+l - f[i][j] = max(piles[i]-f[i+1][j], - piles[j]-f[i][j-1]) - return f[0][N-1]>0 -``` - -```python -#R 1000 Minimum Cost to Merge Stones/合并石头的最低成本 (Hard) -# 每次移动需要将连续的k堆石头合并为一堆,成本为这k堆中石头的总数。 -# 定义 f[i][j][k] 表示将 [i,j] 合并成k堆的最小成本 dp[i][j][k] = min(dp[i][m][1] + dp[m+1][j][k-1]) i≤m int: - n = len(stones) - if (n - 1) % (K-1): return -1 - def get(i, j): - return sums[j+1] - sums[i] - dp = [[[float("inf")] * (K+1) for _ in range(n)] for _ in range(n)] - sums = [0] * (1+n) - for i in range(1, n+1): sums[i] = sums[i-1] + stones[i-1] - for i in range(n): dp[i][i][1] = 0 - for l in range(2, n+1): - for i in range(n - l + 1): - j = i + l - 1 - for k in range(2, K+1): - for m in range(i, j): - dp[i][j][k] = min(dp[i][j][k], dp[i][m][1] + dp[m+1][j][k-1]) - dp[i][j][1] = dp[i][j][K] + get(i, j) #合并成一堆特殊情况不可以从合并成0获得 - return dp[0][n-1][1] -``` - - -```python -#R 1395 Count Number of Teams/统计作战单位数 (中等) -# 3个士兵组成一个作战单位单调的作战单位的方案数。 -# dp[i]记录的是第i个数之前比其值小的数的个数 -class Solution: - def numTeams(self, rating: List[int]) -> int: - def func(nums): - dp = [0] * len_ - res = 0 - for i in range(1, len_): - idx = i - 1 - while idx >= 0: - if nums[i] > nums[idx]: - dp[i] += 1 - if dp[idx] > 0: - res += dp[idx] - idx -= 1 - return res - len_ = len(rating) - return func(rating[::-1]) + func(rating) -``` - - -# 其他 - -